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ABSTRACT

This nepont consists of three parts:
Part 1 + Steady State Decoupling
Part 11 : Stability and Des.ign
Parnt I11: Application to STOL Aircragt

Part 1 presents a conmstructive crniterion for decoupling
the steady states of a Linear time-invariant multivariable sys-
. Xem. This cuiterion conéi.été. 04 a set of Lnequalities which,
when Amtqied, will cause the sfeady states of a system to be
decoupled. It turns out that pure integratons in the Loops
play an important role. Sitability analysis and a new design
technique fon such systems are given in Pant 11. A new and
simple connection between Ain'gﬂe-ﬂoop and multivaniable cases |
48 found. This makes possible the application of the existing
single-Roop methods to mubtivariable cases. These results ane
Zhen applied in Part 111 to the compensation design forn NASA
STOL C-8A aincrafi. Boih steady-state decoupling and stability
are fustigied through computen AWOM.
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NOMENCLATURE

nxl input vector

nxl output vector

closed-loop transfer function matrix

nxh plant matrix

mxn cﬁmpensator‘matrixl

nxm type number matrix of the nxm plant Gp(s)

mxn type number matrix of the mxn compensator
G.(s)

poles of any transfer function g(s) -
seros of any transfer function g(s)

maximum value among all the elements in the
brackets '

least common denominator of the elements in
the brackets

least common multiplier of the elements in
the brackets

cofactor of the ijth element of Gp

cofactor of the ijth element of I+GpGc
determinant of the matrix‘I+Gch

minor of matrix G formed from rows i, "°,1i,
and columns jl"'.’jn '
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PART 1

STEADY-STATE DECOUPLING
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1. INTRODUCTION

Considerable research has been done on the decoupling of linear multi-
variable systems (e.g. see {1)). Such decoupling, referred to as totak de-
coupling in this report, requires the system to be characterized by a non-
singular, diagonal transfer function matrix, and in general, linear state

variable feedbacks have been employed.

The advantage of total decoupling is obvious, however, due to the re-
striction of having a diagonal transfer function matrix, less freedom should

be expected when stability of the system is concerned.

This loss of freedom can be recovered to some extent by requiring only
the steady states to be decoupled. Loosely speaking, a steady-state decoupled
system is one in which changes in each input (i-th) are reflected in a cor-
responding output and only that output, when steady state is reached. Thus,
different from total decoupling described above, mutual interactions are

allowed during the transient pericd (but only during this period}.

Necessary and sufficient conditions for decoupling the steady states of

a system via linear state variable feedback were obtained by Wolovich (2).

His result, in terms of transfer function matrix representation is as

follows:



A system characterized by an (n x m) proper rational
transfer function matrix, Gp(s) having no poles at the
origin (s = 0) , can be steady-state decoupled (via
linear state variable feedback or perhaps some other

less ambitious scheme) if and only if

D(GP(O]) = n (1.1)

where p(Gp(O)) denotes rank of the matrix Gp(s] as

5 approaches zero.

However, it is found that if classical cascade feedback compensation
other than linear state variable feedback is used, the rank condition (1.1)
is no more necessary. Furthermore, the precluded poles at the origin are
alloﬁed. Actually, such poles are very helpful for decoupling the steady
states of a multivariable system, Therefore, significant advantages over
the linear state variable approach can be obtained through classical feed-

back configuration which then is obviously not "less ambitious'.

The constructive criterion for steady-state decoupling will be derived
in this part of the report. It will be shown that this criterion consists
of n{n-1) inequalities ( n is the number of outputs of the given plant),
with the type numbers of the compensator transfer functions as unknowns.

These unknowns are chosen to satisfy the inequalities and hence achieve a



steady-state decoupling scheme. Fundamental mathematical relations are de-
rived in Chapter 2. Two simple applications for 2 x 2 and 3 x 3 cases
‘are given in Chapter 3. Finally, the general case is considered in Chapter
4. Direct comparison of the result to that of the state variable approach

is included in Chapter 9, which marks the end of this report.

The research reported herein was included in the Jen-Yen Huang M.S.E.E.
thesis at the Department of Electrical Engineering and Computer Science,
University of Stanta Clara, Santa Clara, California. The thesis was super-

vised by G. J. Thaler, U.S. Naval Postgraduate School, Monterey, California.



2. FUNDAMENTAL RESULTS

The system under consideration in this thesis is shown below in

Figure 2.1:
COMPENSATOR FLANT
b
r >, — >y
G, {(mxn) ‘ Gp(nxm)
FIGURE 2.1

Where Gp(nxm) characterizes the given m-input, n-output plant,
G.(mxn) is the n-input, m-output compensator to be designed.

N unity feedbacks are used and complete controllability‘and-
observability are assumed (3}, (4), to assure the complete
&escription of the system by transfer function matrices. T, y

are the nxl input and output vectors,-respectively.

Let H(s) = (hy;(s)),

o be the closed loop proper transfer function

matrix, then by the above assumption, it characterizes the system.

completely, and we have:



y(s) = H(s) -r(s)

or 'Yi(5)=

™S

hij(S)‘rj(S)

ji=1

"

= h;.(s)r;(s) + hyj(sdry(s)  d=l,---,n (2.1}

e T o -]

j=1
jfi

By (2.1) and the Final Value Theorem, we have:

tl

1im y (t) lim syi(s]
t+we 1 s+0

n . | .
lim s h;.(s) r;(s) + lim s I h.,(s)'r,(s) (2.2)
s-*0 ti o s+0 j=1 ]

' ji

Then the fellowing formal definition can be given:
DEFINITION:

A system with the transfer function matrix H(s) is steady-state

‘decoupled if and only if it is asymptotically stablel and

s hys(s)'r5(s) = o for all i=1,**",n (2.3)

l5.e., all the poles of the closed loop system lie in the open
left half plane (Re(s)<o). This guarantees the application of the
final value theorem, o



For systems as shown in Figure 2.1, it is well known that the

closed loop transfer function matrixH(2)can be expressed as

H= (I + GG )“1 G G
P c pc

where I is the nxn identity matrix.

(2.4) can be simplified further as follows:

L=y
u

~1
(I + GPGC). Gch

¢

S
(1 +6,6.)7" (I +6,6) - (I+6

1

P

Gc)

1

(2.4)

(2.5)

(2.5) shows that the elements of H depend in a very simple way

on the cofactors of the elements of the matrix I + G,Ge

h,. =1 - (I+Gch)ii i=1.-.n
1 = ) ]
1 det(I+Gch) _

: I+G G ...
P N
' et(I1+G_G .’ ., T
P c? i#j

I

3

i.e.,

(2.6)

(2.7)

2The argument s will be dropped whenever no confusion exists.



where det (I + GPGC) denotes the determinant of the nxn matrix
I + GG, and (I + G G_ )}, K denotes the cofactor of the jith element
p c Pc’iji ‘ ,

cof I + G G .
P c

Let the inputs to the system be polynominal inputs with only one
term, e.g., step, ramp or parabola inputs, which are of primary
importance. The Laplace transform of each input rj(t). i=1,

, n, is then

r (s) = L (r,(t)) = —i.
j U k-
s¥;

v

(2.8)

where rj (without argument ) is a constant, and kj is a positive
integer, e.g., if the jth input is a step then kj=1, a ramp then
k;=2, etc. .
ky=2, etc

Then, by (2.7), the steady-state decoupling critérion*(Z.S)

becomes:

-(I+G_G J.

n
lim I Ty pcii '
. S T = f i= aa e
s+0 !=} kj det (146 6 ) o er all i=1, 1
j#i S pc

Thus, the following fundamental theorem for steady-staie decoupling

is developed:



THEOREM 2.1:
Assume that the given plant Gp(nxm) is stabilizable through the
configuration of Figure 2.1, then the system is steady-state

decoupled if and only if:

n
lim z T . (I+Gch}ji = 0 for all i=1,''",n
s+0 j=1 (kKj_1)  det(I1+G.G

Theorem 2.1 can be simplified further for Systems whose inputs
are not fixed. This is desirable in most practicél applications,
for example, consider an aircraft as our plant Gp’ the thrust,
flap and elevator inputs must not be fixed in order to perform

different functions.

Thus, for inputs with arbitrary constants rj, we have

THEOREM 2.2:

Assume that the given plant Gp[nxm) isrstabilizable‘through the
configuration of Figure 2.1, and that the constants Ty in all the

inputs-rj(t), j=1-+-,n are arbitrary, then the system is steady-

state decoupled if and only if



1im 1 . (I+G€Gczji 0
50 S(kj-lj det( +Gch)

for all i.j=1,"'*,n and i#j - (2.10)

PROQF :
a} Necessity:
Supposé there exists i”,j” such that (2;10) is not true, then,

by choosing rj,(t) as the only non-zero input, we have

n

1im 1 ri (I+Gch1ji'

s+o j=1 s(kf-l) det(ncl;ccj (2.11)
jEi- J . .

= 2im o Tje (16654 |
svo (k-1 det(I+Gch) o (2.12)

By our hypothesis, (2.12) is non-zero, hence (2,.11) is non-
zero, then by Theorem 2,1, the system is not steady-state

decoupled.

b} Sufficiency:
Since (2.9) is simply a sum of (2.10) for different valués-of.
iij, ifl(2.10] is true, (2.%) is obviously true, hence the

proof.

Q.E.D.
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Note that by adjusting the value of kj (=1,2,3,---) associated
-with the jth input, both Theorem 2.1 and Theorem 2.2 can be
applied. to systems whose inputs are either all of the same type
(e.g. all inputs are steps) or hybrid (e.g. input 1 is step,:

input 2 is ramp, input 3 is parabolic, etc.)

.Both Thecrem 2.1 and 2.2 are in neat mathématical forms. However,
they cannot be applied directly, since our objective-is to '. ‘
dgtermine specifically what to put in the matrix GQ as the |
cdmpensator functions in order to decouple the steady states of the
system. Therefore, further result than (2.9) and (2.10) islnec—

essary.

Direct approach, which utilizes the expansions of both the
determinént and the cofactors of a matrix, is used. A geﬁeral
result will be givén in Chapter 4. Before going into thé general
problem, however, two simple cases are treated first in the

. following chapter.
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3. SIMPLE CASES

In this chapter, 2-input, 2-output and 3-input, 3-output plants,
both compensated by diagonal Gc using the feedback configuration-

Figure 2.1, will be considered.

Details for the 2x2 case are presented in Section 3.1, Then, in

Section 3.2, the outline and results for the 3x3 case are given,
3.1 2x2 CASE

“For a given 2-input, 2Z-output plant,

is used, the system configuration in Figure 2.1 becomes
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 a— "1 8c11 - ] "1
PLANT
G.(2x2)
P _
+ .
r2 \ - gczz Y2
‘FIGURE 3.1
Since
g .. 8 g . .&
11%cli . 12
c 6 = P cll P €22
P ¢
gp21gc11 gP22gc22
we have

det(1+G G ) = 1+gp11gc11+gp22gc22+gp1lgpzzgcilgézz
'gplzgp21g;;1gczz | (.13
(I+GPGC)1£ = - gp21g611 (;.2]
(I+Gch)2.1 = - gplzgczz (3.3)
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By Theorem 2.2, for arbitrary constants in both of the inputs

rl(t) and rZ(t), the system is steady-state decoupled if and

only if:
lim 1 (%660, . I .'(3_4]
s>o s(kl'l) det§I+Gch)
. (I+G_G )
and lim 1 . p ¢c’21 = 0 (3.5)

s$30 S(k2~1) det(I+Gch)

where kl and ké are defined as in (2.8).

Let the inputs rl(t] and rz(t} be two step functions with arbit}ary

- amplitudes, then by (2.8), k, = k2 = 1 and‘rl;rz are two arbitrary

_ 1
‘constants.

Then, by substituting (3.1), (3.2), and (3.3) into (3.4) and (3.5),

we have

1im Ep218Bcy1
s»o (1+gp11gc11+gp22g022+gp1lgp223011gc22

= 0 . (3.6)

g.,,)

Eo12%p218c118c22
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lim | ®p128c22 _
370 U*8p 1801, %8p228c22" 8p118p228c 11822

and = 0 (3.7)

“B5128p218c118¢27)

Note that in both (3.6) and (3.7), the s factor from the Final
Value Theorem was cancelled by the %lfactor in the input transforms,

hence no explicit powers of s appears in (3.6) and (3.7).

Thus, for systems as in Figure 3.1 with arbitrary amplitude step
inputs, the necessary and sufficient conditions for steady-state

decoupling are (3.6) and (3.,7).
For a given plant, all the'gpijAare known, hence the design for
steady-state decoupling is simply the determination of gcll and

8.22° such that (3.6) and (3.7) are satisfied.

For example, consider

1 1
s+1 s+2
G (s) =
P 1 1
s+3 s+4

By (3.6) and (3.7), if
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3211(5)

(3.8)

it

gczz(s)

]

where g’l (s) and g’czz(s) do not contain any pole or zero at the
cl}

origin, or alternatively, lim g~ ‘and lim g~ are non-zero

s+0 cll s+o €22
finite constants, then
S | - .
s '
Since,
lim g .. g _ -8 . & .. 2 1 ‘ '
sso ( P117p22 “p127p21)= 13 # 0 _ (3.9)

the following term in the denominator of both (3.6) and (3.7),

g ) which contains a 1/s?

(Bp118p228c118c2; ~ Ep128p21Bet1Be2

factor, will go to infinity faster thanrboth of the numerators in
(3.6) and (3.7} as s approaches zero. Thus, (3.6) and (3.7) are
satisfied and the system is steady-state decoupled. It is seen
that integrat i : i

that the pure integrators in gcll and gc22 anﬂ the constra1nt
(3.9) are important. These constitute the highlights of the

analysis that follows.
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Let
-tp..
. ‘= 8§ 1J . ..
Epij £ pij
'tc" : ' (3.10)
= 1j - ) : :
8cij © ° € cij
where t_.., t  are integers that will be referred to as the
P1) cij .

type numbers of the corresponding transfer functions, and

g; :1» 8 .. are such that: 1lim g and 1lim g° .. are non-zero
Pij” % cij = s+o  Pij - 550 i _
constants (i.e. the numerators and denominators of g7 .. L.
_ . _ pij cij
do not contain powers of s as their factors). Whenever gpij = 0

are defined to he

and g

OT g.;5°% 0, the corresponding g’pij and‘g*cij

identically zero, however tpij and tcij become indefinite in this

case, and we will use the symbol x to identify them for reasons.

that will be clear in Chapter 4,

The matrices Tp'= (tPij)nxm and Tc = (tcij)mxn

to as the TYPE NUMBER MATRICES of the plant and compensator

will be referred

. respectively.

For example, given

5 2
sis+3i
G =
P 5 0
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the type number matrix is

By separating the powers of s in each of the transfer functions as

in (3.10), (3.6) and (3.7) can be expressed as:

s'(tp21+tc11) g g” _ _
Iim *S p21°% ¢l11 - R
S = 0 (3.11)
S-(tP12+tC22) - ! -~ .
lim '8 p12°8 22 . :
520 A ] =0 7 (3.12)
where
po, ~(tpr1ttegg) “(tp22+te))
A = - F P c 2 - . -
‘ 1+s g p118 11%% E p228 22
+5—(tp11+tpzz+tcj-1+t022)g‘ gJ gn ..
P118 5228 (448 c22
-(f +t +t +t ) :
12 21 CI]- | - - » -
-s  PREp R S S

P12” p21~ c11® c22 (3.13)

" Thus, the necessary and sufficient conditioné (3L6).and (3.7)

assume different forms in (3.11) and (3.12). Again, onée a plant

\
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teyj and g7cyjy in (3.11) and (3.12) are left adjustable. It was

and hence t are known. Therefore, only

is given, g
shown in a previous example that pure integrators in Be11 and

.o (see (3.8])) are important in steady-state decoupling. In
terms of the expressions given in (3.10],‘this is the same as
‘saying'that the values of t . and t.,, are the key factors in the
attainment of a steady-state decoupling scheme.

such that

In.order to find out the constraints on t and t

cll c22’
(3.11) and (3.12) are satisfied, the following theorem is devgloped:

THEOREM 3.1
Let

a) | % -n;
' C (s) = i=15 Pi(s)
0 -

2 -m,
1+Is ]q.(s)
j=1 J

\ o (3.14)

~be a rational function in s; where_Pi(s), qj(s),are themselves

rational functions such that 1lim P, (s) and lim q,(s) are non-zero
$+0 $+0 j
finite constants and n, m, are integers for all i = 1,"+**,k,’



b) NgMax {nl

MaMax {my," " *,m,}

k
¢) lim I
s+o i=1

n,=N
i

2

lim Z
s¥o j=1
m, =

]

2
lim I
s+o j=1

'I'DJ-'-'-

"where

L B
[

i
n,=N
1

. {3.14) that have s

summations iﬁ (3.16}) and (3.17) are defined similarly.

Then lim Co(s)
s+0

either M=>N

or T . M<0,

-N

’...’nk}

b8

Pi(s) #0

Qj(s) # 0

q;(s) # -1

J .

Pi(s) means that the summation is only over those

0 if and only if

N<OQ,

19

(3.15)

(3,16).

(3.17)

as their multiplication factor. The other two

(3.18)
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PROOF :

Co(s) can be expressed as

k -n, k -n, k -n,
Is 1Pi(s) + ZIs P.(s) + ZIs 1Pi(s]
ist . i=1 T i=1
C (s) = n.>o n, =o n;<o
o 2 -m, 2. -m, ' L -m,
1+ts Jq.(s) + Zs qu[s) + s Jq.(s)
j:]_ J j:]_ j-_-]_ ] .
my>o mj=o ~mj<o
Since '
k -n. _ B -m . :
1im s P.(s)=1lim Is qu(s) = 0 by (a)
s*o i=1 . s+o j=1 ‘
n.<o m,.<o
1 J
i 4 -n, k
lim £s p,(s) + lim zPi(s)
s*o i=1 i s»o i=1"
lim € (s) = n;>o n;=
s+0 © % -m. .
1+1im 135 Jq.(s) + lim $q.(s)
s+0 j=1 Y $+0 j=1J
m,>o m.=0
] J

 The 1imit value can be determined for each of the following nine

possible cases:



lim Co(s)=

N>0, M>0 ,
, k M-n, k M
1im £s  P.(s) + 1lim s P, (s)
. i . i
s+0 i=1 s+0 i=1
. n,>o ni=0
lim € (s)= -

o( ) . 2 M-m, 2
lim sM+1im =s Jq . (s) + 1im IsMq_ (s)
5+0 s*o0 j=1 J . $%0 j=1

m.>o m,.=0
}
k M-ﬂi
lim s Pi{s)
s*g i=1
n,so .
= i _ = 0 if and only if M>N,
1im Zq.(s) '
570 j=1J
m.=M ‘
J
N>0, M=0
1im s™N zp (s)
s+>0 i=11
_?ifN . ta,
. l |
1 + 2q.(s)
j=17
m_=o
J
N>0, M<0
K
. _-N
lim s EPi(s)
S*O - i=1
1im € (s)___ P3=N
(4] - 1 = tw-’

21

by (3.16)
& (3.15)

by (3.15)

by (3.15)



4) N=
lim C (s)=
s5+0 O

5) N=
lim C (s)=
s*o ©

6) N=
lim C (s)_
s*o ° 7
7) N<
1im C (s)=
s+o °

0, M>0
k

1im I Pi(s)

s+0 i=1
n.=
i

o

iim s~
s*0

0, M=0

k

lim ZPi(s)

s+0 i=1
n.=
1

3
My

3
m.

J

?j(s)
=M

22

by (3.16)

by (3.15)

by (3.15)

by (3.16)
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- 8) N<@, M=0
lim C (s)= 0 =0, | by (3.17)
s»0 © 2
1+1lim Zq (s)
s*o j=12
m, =0
J
9) N<0, M<0
lim C (s)_ _O = 0
>0 1

Thus, 1im € (s) = 0 if and 0111§ if one of (1), (4), (7), (8),
(9) isS:gue. Since the conditions in (1) to (8) are equivalent
to lim Co(é) = 0 if and only if M>N, and (9) gives M<0, N<C, the
thezzgm is proved. | ‘ |

Q.E.D.

Note that (3.18) contains only the powers of s, neither P nor
qj appears in this expreésion. Also, note that Co(s] is of'exacfly
the same form as the rational fpnctions in (3.11) and (3.12),

-therefore, the theorem can be applied directly.
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Compare (3.11) and (3.12) with (3.14), and by the definition of

M and N in (b) of Theorem 3.1, we have:

M=Max {t 1% %11 %p22*te220 Fp117 0y, Pe11* e 22
tp12* %,  te11%epp! |
Ny, Max tepa1*tery) = tpar*tent (3.19)
Nyy=Max {tp1§*tczz} = Tp12*te22
Where the notation Max {--'} deéotes the maximum value among all

the elements in the brackets and the subscripts on N are used in

‘accordance with [3.2) and (3.3) to distinguish them from each other.

Since tpij are known for a given plant, the only unknowns in
{3.19) are tcll and tc22’ which can be chosen to satisfy (3.18).
Once tcll’ tc22 are chosgn, M, N12, Npy are known, and (3.15),

(3.16), (3.17) can then be written down explicitly.

In general, these expressions contain both g‘pi. and g~ . . Since
, cij = ‘

the pole and zeroc locations and the gains of each g* are free

cij
parameters, they can hopefully be adjusted to satisfy (3.15),

(3.16), and (3.17).
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These free parameters should also be designed for stability and
transient response of the system, therefore, they cannot be
adjusted with complete freedom. However, as was mentioned before,

- (3.18) does not depend on g‘cij’ therefore, the design of stability
will not destroy the steady-state decoupling as long as (3.15),

are

(3.16) and (3.17) are not violated. Hence, once tc and tc

11 22

determined, stability can be considered.

~After all g’cij are designed, however, (3.15), (3,16) and.[3.17)_
must be checked. 1If satisfied, the design is completed, if not,
slight adjustments of the free parameters, under the allowance of

stability, can be made in order to satisfy these constraints and

i

hence guarantees that the steady states are decoupled.

It might happen that in some cases, no adjustment in g‘cij is

possible to satiSfy these constraints, e.g.,

1im .

s+o (8 pllg‘p22'g'plzg’p21) £°c118"c22 # 0 is not possible if

1im . - . o . - ' -
520 (g p118 p22 gplngZI) 0 happe#s to be true for the

given plant.

In cases like this, anothgr choice of toq1 and t ., is‘ﬂeCQSSer.
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Following this procedure, we can, at present, assume that (3.15),
(3.16) and (3.17) are satisfied. Then, by Theorem 3.1, if the
constraints (3.15), (3.16) and (3.17) for the rational function in

(3.11) are satisfied, then (3.11) is true if and only if

either M>N12

(3.20)

or M<D, N12<0

S8imilarly, if the constraints (3.15), (3.16) and (3.17) for the

Il

function in (3.12) are satisfied, then (3.12) is true if and only

if

either M>N21

(3.21)
or ' M<0, N21§0

For steady-state decoupling, both (3.11) and (3.12) must be true,

‘therefore, combining (3.20) and (3.21), each of the following four

-sets of criteria can be used:

M>N, - : (3.22)
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M>N :
12 - (3.23)
M<O, N21<0

M>N21

M(O, N12<0

(3.24)

N, _<O (3.25)

It should be noticed that (3.23) and (3.24) are redundant since

they are contained in (3.25).

The best choice among these four sets will depend on the type

number matrix of the given plant.

Consider the following example: Given the 2x2 plant3
i -5 +1 -5 +2 7
(s+1) (s+1)2
G (s) =
P _
-3s +1 _ -5 +1
3(s+1)2 (s+1)2

3 The plant is taken from an example in (5).

(3.26)
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Find a steady-state decoupling scheme using diagonal Gc and
the configuration of Figure 2,1 assuming that the inputs are

arbitra;y steps.,
By inspection, tpij = 0 for all i, j=1, 2, then by (3.19),

M=Max‘{tcll,tczz,tc11+tc22,t011+tc22}

Nyi= teaz .

If (3.22) is used? tc11=tc22=1 is the simplest solution {note that"

.the solution is not unique). For this particular choice, gc117
1 - _1 - . . . M )
Py g c11’_gc22"§ g 22’ hence the introduction of pure integrators

in the loops will cause the steady states to be decoupled.

(3.23), (3.24) and (3.25) can also be used, however, in this case,
the solutions for both tc11 and tc22 will turn out to be. negative,
which corresponds to the introduction of differentiators in Gc’ and

is physically undesirable.



29

Since only one term appears in the numerators of (3.11) and (3.12},
(3.15) is satisfied automatically by definition of g'n;; and
(see (3.10)).

g'cij
By inspection of (3.13) and by noting that both of the last two

we have

. -M .
terms contain s for the above choice of tc11 and tc22’

for (3.16)

lim : - '
s¥o (8'p118' ;228 c118"c22 = 875128 o8 (118 ¢22) # O

Since

lim

$+0 (g'p11g'p22 B g'p1:zg'p?.1) 173 # 0

We have
lim
s+0 g'c11g'c22 # 0

which is again satisfied automatically.

Similarly, by inspection of (3.13), (3.17) is also satisfied auto-
matiéally, since by the above choice of te11 and te22, none of the

terms in (3.13) has 0 as the power of the associated s factor.
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Therefore, we are guaranteed to have a steady-state decoupled

system by infroducing one pure integrator in each of gc11 and

Be22®

Actually, in this case we don't need (3.15) and (3.17}, since
M=2>0, Ny,=N,;=1>0, and by (1) in the proof of Theorem 3.1,

only (3.16) is sufficient.

It should also be noticed from the proof of Theoreﬁ 3.1 that the
constraint (3;15) was used onlx to make (3.18) also a necessary
condition. If (3.15) is not true, the sufficient part of the
theorem is still guaranteed by (3.16) and (3.17). Therefore,

it is usually onl} necessary to check (3.16) and (3.17}.iﬁ

practical design,.

For inputs other than steps, Theorem 3.1 must be generalized as

follows:
THEQREM 3.2

Let

-1 - ‘
C (s} = x Co(s) (3¢28)

where t = 0, 1, 2, *+-, Co(s) is as defined in (3.14) and (b),

(c) are the same as in Theorem 3.1.
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‘Then

lim . .
s+0 Ct(s] = 0 if and only if

either M<O, N+t«Q

(3.29)
or M>N+t -
PROOF: By writing:
"k -(n. + t)
Is 1 Pi(s)
¢ (s) = i=1
t( ) £ -m,
1+ s Jq.(s)
j=1
the result follows immediately by Theorem 3.1. ‘
Q.E.D.

Now let input 2 be a ramp, while input 1 is still a step (i.e.,

k =1, k,=2). Then by (3.4), (3.6) and (3.11) are still the same.

However, for input 2, since k2=2 in (3.5), there will be an
additional s factor in the denominators of (3.7} and (3.12).
Since the only difference is this additional s, (3.19) remains

unchanged, and the application of Theorem 3.2 gives M>N 1.

217

Therefore, the conditions corresponding to (3.22) becomes:
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12

M>N21+1

=2, t =1 as the

F 1 . . < ' h
or the plant (3.26), by (3.27) we have tc c22

11

simplest solution,

Thus, we need one more integrator in £.11 in order to decouple the

steady states, if input 2 is a ramp instead of a step.
3.2 3x3 CASE

For a given 3-input, 3-output plant,

Bp11 Bpi1, $p13

G =
P gp21 &

8p31 Ep32 Ep33

p22 ®p23

if the diagonal compensator matrix

ey O 0
Go 7| O 8c22 O
0 0 gc33

is used, the system configuration is as shown in Figure 3.2.



+ -
PLANT
r, ; g oy —— Yo
c22 G (3x3}
- P
Ts -l £.33 3
FIGURE 3.2

Expressions for det(I+G G ) and (I+G G ).,. can be obtained either
pc p c 1}

by direct expansion as was done in Section 3.1 {(see (3.1), (3.2)

and (3.3)), or by using the formulae (4.5) and (4.6), then by (2.10)

of Theorem 2.2 and assuming step inputs (i.e. k1=k2=k3=1),a set

of 6 limit expressions similar to (3.11) and (3.12) can be

obtained. Compare these with (3.14), we have

M=Max {tp11+tc11’tp22+tc22’tp33+tc33’tp11+tp22+t011+t°22'

tp12+tp21+tcll+tc22’tp11+tp33+tC11+tC33’tP13+tP31'
*te11*te33 tp22* a3t tea e tya3t tpza oot te s,

Fp11+tp22+tp33+tcl1+t022+tc33’tp12+tp23+tp31+t311

+t t +t +t

c22"%e33” P13 T p21" pa2 11 te 22t tess th13t T2,

+tp31+tc11+tc22+t033’tp]2+tp21+tp33+tc11+tc22+tC33’

t

Cp11*tp23 32 ter1 o2 te 33! (3.30)



N12=Max

N13=Max

N,,=Max

21

N23=Max

Ngq=Max

N32=Max

of this.

 {t

{tp21

t
pZ3

{tp31

tp32+tp21

+t

+t

+t

cll’tp21+tp33+tc11+tc33’

p31 %11

c11°tp31

*te1

+tc33

+tp22

+tc22

}

+t
}

c11¥tcz22e

(tp12%tea2  tp12¥tyss* ez  tess

tp13*tps2tteanttess!

t t
p31*tp12*tc11*t

tp23+tp12+tCE2

{t
p23

+t

c22

+tcSS

p32 tc22°tp32  th11ttenn

}

t +t ,t +t +t
pl13 c¢33" pi3 p22 22
L}

+
tc22’

t ’
* c33

i +t 4+t +t ’
¢33 p23 pl1 ¢ll ¢33

tp21+tp13+tc11+tc33}

Note that if g .. =
“TP1)

34

~(3.30)

0 for some i,j in a given plant, any term in

{(3.30) that contains the corresponding tp

ij'has to be dropped.

In Chapter 4, an analytical scheme will be designed to take care
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Similar to (3.22) through (3.25), we have 64 (=2"("-1)y poccibie
sets of criteria here to choose from. However, similar to the
pPrevious case, only the two corresponding to (3.22) and (3.25)

are not redundant, these are:

M>N12

M>N13

M>N
2 | (3.31)

M>N23

M>N31

M>N,,

and

M< 0

N, .<0

12
13

N1 <0 | (3.32)

23
31

32

Consider the following example:
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EXAMPLE:

Given a 3x3 plant4 with

(s) = 0.081(s-0.205) (s+0.967+j1,379)

Bp11

-3 Yy/D-+D
(s+0.967-31.379)/ TH

gplz(s) = -6.12(s+0.837)(s5+0.947+j1.144)

(s+o.947-'j1.144)/n-nF

gpls(sJ = -202(s+1.885}(sf13.037)/D~DE
g.5,(s) = -0.00163(s+2.881)(s+0.032+j0.313)
P2 | o (3.33)

(s+0.032-50.313)/D-D

gpzzts)'= -0.153(s+0.824) (5-0.047+j0.205)
(s-0.047-j0.205)/D'Dg

gpzs(s).= -9.07(s5+26.339) (s+0.03+j0.361)
(s+0.03-30.361) /DD,

8p31 (5) =—0.00209(5-1.049)(s+0.268)/D-DTH

gpzz(s) = 0.0995{5-0.12)(s+3.485)/D'DF

gp33(5) = ~235.5(s+0.361+j0.076)

(s+0.361-j0.076)/D'DE

“NASA STOL C-8A aircraft, with thrust, flap angle and elevator

angle as the inputs and velocity, angle of attack, pitch angle
as the outputs. :



37

where
D(s) = (s+0.018+§0.336) (s+0.018-j0.336)
(s+1.103+§1.277) (s+1.103-j1.277)
DTH(SJ = (s+o.99+jo.47§) (s+a.99~j6.479)
D (s) =  (s+3.3+j10.49) (s+3.3-310.49)
D (s) = s+ 1

Find a steady-state decoupling scheme using diagonal Gc’ and the
configuration of Figure 3.2, assuming that the inputs are

arbitrary steps.

By inspection of (3.33), t .. = 0 for all i,j = 1,2,3. Thus (3.30)

assumes the following simple form:

M=Max {t 11s%ca2: b33 te11* ez te11*tess?

teaa*tteszater1tte22ttess!

+t }

NygeMax {t 1.t 194t 33

12
N ERL ISP ELISERAPYTY
N21=Max {tczz,tc22+tc33} | (3.34)

N31=Max {tC33’tc33+t;22}

Ngp=Max {togzz,tozz+teyg!t
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By (3.31) and (3.34), it is clear that M must be tc11+tc22+tCS3’

and te11s tc22’ tc33

cannot be a maximum). Hence the simplest solution is t.,4

must be positive (otherwise to11*te22ttess

togg = tozz = 1. This meansrthat the introduction of one pure
integrator in each of the compensators g.49, Bo22: 8c33 will cause

the steady states of the system to be decoupled,

Since M>0, Nij>0, only (3.16) has to be checked. It can readily be
found that this is satisfied, therefore we are guaranteed to have

a steady-state decoupled system.

(3.32) can alsq be used, however, as in the 2x2 example of
Section 3.1, the result requires pure differentiators in Bc11e

gc22 and g.z3, hence also not desirable for this particular-plaﬁt.
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4. GENERAL nxm CASE

Results of Chapter 3 show that, for the two special cases
considered, the steady-state decoupling criterion can be written
as a set of n(n-1) inequalities, where n is the number of outputs’

of the plant (or number of inputs or outputs of the system).

These results will be generalized in this chapter to systems
ﬁohsisting of ﬁ-input, n-output plant Gp(nxm), n;iuput, m-output
compensator Gc(mxn), and unity feedbacks are employed as shown in
Figure 2.1. Exactly the same approach as in Chapter Slis presumed

and it will be seen that both Theorem 3.1 and 3.2 are applicable.

As was shown in Chapter 3, the first step is to obtain expressions.
for det(I+GPGC) and (I+Gch)ji as in (3.1), (3.2} and (3.3].‘ For
the general case, this can be accomplished by using the following

formulae which are proved in Appeﬁdix A.

For any nxn square matrix G

n

det (I+G) = 1+ % > G ' . (4.1)
_ 2=1 1;k1<°"<k£sn kg, ook
n-2
(I+G).. = - L : I G fi,kq," ',k
)1 =0 15k1<---<k£sn 1 . 2 , (4.2)
j:kl'n-”_.OkE

kystm ok 1L
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where G _l denotes the minor formed from rows il,"‘,iz
I PURRRIE
and columns jl,---,jP of the matrix G with 1 < &g n.

Let G = Gch where Gp

compensator matrix. Then by Binet-Cauchy formula (6]}, we have

is the nxm plant matrix and Gc is the mxn

G £
k]_:‘ ,kg
. (4.3)
ky, >k G1,"""»0
T Gp 1 £ Gc 1 . g<m
_1501<"'.<02‘m 019.‘.102" ki"..’k'z
0 L>m
and
ik k
» 1] ]
G ' .
Jskls ..skg ‘ .
, (4.4)
1:k R 3 . P.sP1s " 5P
T 6, 1 . 6. [ ° 1 .
1gp <---<p <m I iskyy 7Lk
0 '3 0’71 2 1 L Lgm-1
0 ' ' L>m-1
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Combining (4.1) and (4.3), (4.2) and (4.4), respectively, we

have _ .
min{n,m)
det(I+Gch)=1+ I B X I
%=1 Isk <-+-<k sn 1o < --<g,sm
(4.5)
. kl, ’kEA . 01,"',02
.. c .o
p 01’ ’Uﬂ, kl, . ,km
B min(n-2,m-1) .
(I+GPGC)ji =- z S o z
: £=0 lsk <+ -<kg<n {=p0<--»<gzc§
| kyott o, ko#i, ]
. | (4.6)
, i!k :'..'.’k P80 " " ,P '
G 1 L \g 6’1 2

po,pl’...’pﬁ ¢ jskls..':kz

Then, by expanding the associated minors, (4.5) can be written as

- min(n,m)
det{I+G G )=1+ ¥ b £
P e £=1  lskj<ee-<kpgn lggp<cce<opsm
g1, 2 0 k k
5 . ) ‘, 1 3 %
] ] L] 1 1
o' o, '01 o o
L B » g o' g
5 1 4 G 1 G L



min{n,m)
=1+ T
£=1 1<k

Q
[arem
-
-
Q
-

LT §
a" U']_".-.’

Q

where 5

1 if ci,"

-1 if of," "

E .

G

'JU;'

P

»o!

L
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E .
'<k£$n 1501<---€ozsm
k k 0" U"
Y ey | H)s, S B )
o] % X )

1,.."0;
11-.‘!0'1"

is an even permutation of o

is an odd permutatlon of g

and I , I represent summations over all possible permutations of

G' O.H‘

ci,"',oi, and o;,

The identitjﬁ

UE,

used, which can be proved

0‘1,

"*',04, then c;,---

s 0

L

It can easily be shown by

respectively.
(o1 g g * ¢}
1: H » »
= § 8 1 % is
oi: ’ol UTJ :ﬂ;

by first rearranging 01,~;-,a£ into

and by using simple reasoning.

letting n=m=2 in (4.7) that (3.1) can be

obtained through this expression. Similarly, general expressions

for the cofactors [I+G Gc) § can be obtained by (4.6). Thus, by

using (4.1), (4.2), (4.3), and (4.4), the problem of expressing

det(I+G G ) and (I+G_G ),

p c ji
and g _.. explicitly is solved.

Epij cij

in terms of the transfer functions
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Then, followiﬁg the approaéh of Chapter 3, limit expressions
similar to t3u6) and (3.7)7can be obtained. 1In order to evaluate
the values of these limits, it was found convenient to express
_each transfer function as in_(3.10). By doing so, (4.7) can be

written as:

min{n,m) ,
det(I+G G )=1+ b T S X
p cC £=1 1sgk <" "<k sn lgoy< " <o sm g

. of," " ,a! k k \  [oy o”
b 1 o 1 +*+T Lt e e qT £
nd PN S P .

g a;, ,UE g) P g' ¢ kg ¢ k,
k 'k o." O-H .
Gl 1 -.-Gﬁ -E . G‘é 1 cané Rn (4.8)
Plgr | ] |
Ui UE kl kE
Note that there are
min(n,m) "~ min(n,m)
JA ot nCg-mCp-2t.2t= T P . P, (4.9)

£=1 =1

terms in (4.8). Similarly, (4.6) can be manipulated into the

following form:
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min(n-2,m-1)

(1+g Gc)__'-:- X : £ I
P& 220 1skg<oro<k sn lspg< T <p sm
kl)"'lkzﬁilj
p! p!
[P ) " 1
p'p P oy
1 k k p" plr p"
~[% +T 1 + +T L +TC 0 +Tc + +Tc %
s LP\ry/ Flei Pe; j ky k,
i k k pit ol p"
G2 af Yol %)L e f %)a coegrf B (4.10)
L p p‘ pl c < k C k :
0 1 g j 1 .
Again, note that there are
min{n-2,m-1)
LA b
B £=0 | n-ZCE‘mC£+1-(£+1)! READE
min(n-z,m"l) ’ [4.11)
= I - (e+1). P,. P ' :

terms in (4.10).

By (4.8), (4.10) and Theorem 2.2 (assuming.arbitfary rj], n(n-l)‘
limit expressiqns similar to (3.11) and (3.12) can be obtained.
These limits are, according to Theorem 2.2, nécessary.and sufficient
conditions for stead}-state decoupling. In order to satisfy‘these
conditions, Theofem 3.1 and 3.2 were developed to find the

n i on t_....
constraints Cij
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By comparing.{d.S) and (4.10) to the denominator and the numerator
of (3.14), it can be seen that they are of exactly the same form,
only that ni’mj’pi'q3 assume more complicated forms here,
Therefqre, similar to what was done in Chapter 3, constraints on

t for steady-.state decoupling can be obtained by applying

cij
Theorem 3.1 {(or Theoren 3.2,‘if the inputs contain ramps or parabolas

besides steps) to each of these n(n-1) limits.’

To be more precise, let's go through these step by step as

follows:

1. Assume step inputs with arbitrary amplitudes,(i.e., kj=1, rj

arbitrary for all j=1, ""n), and consider the configuration
Figure 2.1. By Theorem 2.2, the system is steady-state

decoupled if and only if

570 det[I+Gch) ' (4-12)

fbr all i,j=1,""",n and i#j.

Note that 1/[skj - 1)= 1 since kj = 1 for step

inputs.
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2. By compariﬁg the denominator and the numerator of (3.14) to
those of (4.12) which are given respectively in (4.8) and
(4.10), we have J m's, J q's, L n's and L p's (see (4.9) and

'(4.11]) as follows:

k k 0" o-‘l
m,, = T [ Yeeeear [ ® +T 1 eooear (4] (4.13)
J P .

gi D ci kl kg_

i k k p” p” p‘f
ng'=T +T 1 +"'+TP % +Tc Cl+T 1'+“‘+'I‘c L (4.14)

. ' . c ‘

k \ k g! o ‘
a, =6 ...erf Flgf )...q] # (4.15)
j! of Plor] © kq ¢ k,

1 L

i k ' k p'f p" . p" .
1= G 6t Meverf Mlerfole Y[ T2} (4.16)
Pl t P r P T o] . c k C k

Yo 1 ) J 1 2

where each possible combination of k's o's -and p's under the res-

“trictions in (4.8) and (4.10) contributes to one of the above.

3. Then, for each of the n(n-1) limits (4.12), Theorem 3.1 can be

applied and a set of inequalities consisting of

Max {m | jr=1,"",3} o (4.17)

and Max {ni,[ i'=1,"',L} . (4.18)
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can be obtained as in Chapter 3. Again, since all the Tés in
(4.13) and (4.14) are known for any given plant, the only
unknowns are the Tés which can be chosen to .satisfy the

inequalities and hence achieve a steady-state decoupling scheme.

Wﬁenever any transfer function in Gp or G  is identically zero,
those terms in the summations of (4.8) and (4.10) that contain
such a factor will also be identically zero, hence the number

of non-trivial terms in (4.8) and (4.10) will be less than J and
L, respectively. The number of mj, and ni, will also be

reduced. Thus, those mj, and L in (4.1?) and (4.18) associated
with the identical zero term should be dropped, since they don't
even appear iﬁ (3.14). 1In order to express this analytically,
the identification symbol "x" introduced in Chap£er 3 (see-the.
discussion following (3.10)) will be used. Also, the following

definition of annihilation sum is needed:

The annihilatién spm,is defined to be a gummation, which will sum
up to be an empty set whenever there'exists at least one |
identification symbol x in the summands, otherwise it is the
same as algebraic sum. The symbol (+) will be.used-for sﬁch
kind of summation, e.g.

1(+)2(+)3

1(+)x(+)3

1+2+3 = 6

il

f, an empty set.
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By using these concepts, (4.13), (4.14) become

. : .lkl kg f'f']: U'ﬂ,'
.m_, =T (#) " ()T )T £ ()T (4.19)
A U Poz) c\k Ky
n = T ! (+)T kl (+)';'(+)T kn +)T D; (+)T !
if P p! P\, P,y ¢ i i x
o 1 1.
o
(+]"-(+)Tc (4.20)
- kz .

Now, starting from the type number matrices TP and Tc (see
Chapter 3), we know immediately from (4.19) and (4.20) which

m.

3 and ni, are to be included and which should be discarded.

Define M, %i to be the 1xJ and_le vectors with theirlelemehts
corresppnding to the J énd L annihilation sums given in (4.19)
and (4.20). Note fhaf some of their.elements can be an empty
set, whenever ny is contained in those particular elements.

In this way, whether a term should be dropped or not is expressed
analytically. Then, by Theorem 2.2 and Theorem 3.2, the follow-

ing general theorem for steady.state decoupling can be given:

Theorem 4: Let the given nxm plant Gp be compensated by an.mxn

Gc as in Figure 2.1. -Tp (nxm), Tc (mxn) are the type'number

matrices of the plant and compensator, respectively. M, Nji
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are defined to be the maximum among the elements of M and Nj"
: 1
respectively. Where M and Nji are the 1xJ, and 1xL vectors

defined above, then under the following constraints:

min(n-2,m-1)

(i) lim z I I I
§*0 =0 I1gsk,<<+<k sn l<p <**"<2p sm p!
: <N..> 1 L 0 £
Ji ,
kl’.’.,kg#ilj
ol N i k k
¥ s 0* L Gl; GI') 1 GI; L
" (2] n I 1
LR T Py ] p
pll pr! pn & .
¢t Olgrf 1) .. gt % £ 0 (4.21)
cy . c k c Kk
J 1 )
min(n,m)
(i) lim Z I I Iz 01, " *,a!
s+o £=1 1sk,<++<k <n 1gg,<***"<g <m g'g"¥% L
<M> 1 % 1 L ol g
l 1’ » E
k ‘k : O’” .U" E
1
6 -6y . G _ Y Bl (4.22)
] . 1 .
01 02 _ kl kf. .
min(n,m)
(iii)lim z L > Ir gl 0!
50 L=1 lsk1<'--<k <n 1561<"‘<c cm gtoné 1
<0> 2 L Lo, e g
1’ L]
k k 0.1! O.H
63 1 6 21 grf ! 6rf *} £ -1 (4.23)
ag! ag! |4 k ‘
\% 2 1 5
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Where <N > under the summation sign of (4.21) denotes that the
)i -N_.

sum is only over all those terms with s J! as their

multiplication factor in (4.10). The <M> and <0> in (4.22) and

(4f23) are defined similarly.
The system is steady-state decoupled if and only if either

M>N, . + k.-1
Ji ]
for all i = j

or M<0 N, < 1-k. : i,j = 1,°+,n
' ji j

Theorem 4 looks formidable, however, for systems with less than

4 iﬁputs and 4 outputs, long-hand calculation is still feasible,.
~especially when G, assumes some simple forms like being diagﬁnal,
as were shown in Chapter 3, which is often of practical

importance.

Besides, due to its analytical naturé,-Theorem 4 can be programmed

into computers, thus making the design easier.



PART II

STABILITY AND DESIGN

Y X
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5. INTRODUCTION TOQ PART II

Part T gives the scheme for decoupling the steady states of a

system, however, it should be noticed that:
1. The result does not guarantee stability.

2. The whole discussion is meaningful only when the

closed-loop system is stable.

Therefore, stability must be considered after the steady-state

decoupling scheme is achieved.

The problem of stability and design of multivariable eystems-has
been widely investigated (e.g. 5y, (M), (8), (9); (10), (11));
and a survey of the existing methods was given by Anderson (12).

In general, efforts have been made to utilize the beauty of the

existing single- loop techniques such as Nyqu1st Bode- Nlchol'

methods and root locus design.

In this part of the thesis, a new connection between single-loop
and multivariable systems is seen by properly factorizing the
closed-loop characteristic equation. Th15 makes the des1gn of
multlvarlable systems p0551b1e by using any suitable c13551ca1
single-loop method. An extended root locus method is developed

and diagonal G will be cons1dered przmar11y
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6. DESIGN OF CLOSED-LOOP SYSTEMS WITH

2x2 PLANT AND DIAGONAL Gc‘

The characteristic equation for single-loop systems with cascade

compensation and ﬁnity feedback is
- = ' . i
1 + gp(s) g, (s) 0 (6.1)

where gp(s) is the given plant and gc[s) is the cascade compensator

function to be designed.

Two major techniques for the design of gc(s) are Bode'ﬁ method and
the root locﬁs method (see (14)). However, only one unknown
function can be handled in each of these methods. Therefore, they
cannot be applied directly to multivariable cases, since in genérai,

there exists n-m unknown compensator functions to be designed.

A simple factorization which shows the connection between single«
loop and multivariable cases will be given in this chapter. It can
then be seen that the abové-mentioned single-loop:methods,can still

be applied for multivariable systems.

The design philosophy will be illustrated through an example in

Section 6.47 Before thét, however, several important steps must be
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established. These are given in Section 6.1 to 6.3 as follows:
6.1 _CHARACTERISTIC EQUATION
It is proved in (7) and (8) that the stability of a multiv;riable

System as shown in Figure 2.1 js determined by the zeros of

Nl(s) and N(s), which are defined as follows:

les) : 7 B

D (s) & det(I+G (s)°G (s)) (6.2)

N A (s)-8 (s)

NEs) ) e P (6.3)
01(5)

Where the rational function Nl(s)/DI(s) is in irreducible form,
i.e., no common factor between Ny(s) and Dl(s) is left uncancélled.
And Ac(s) Ap(s) represent the characteristic polynomials of the

rational transfer function matrices_Gc(s) and Gp(s), respectively.

The characterlstlc polynomial of a proper rat10na1 transfer functlon
matrix G[s) is deflned to be the least common denominator of all the

minors (in 1rreduC1b1e rational form) of G(s) (see e.g. (13)).

Therefore, by (4.5), if all the minors of G and Gc are'hon~zero,
. Y
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and no common pole exists between Gp and G, the .denominator of
det(I+Gch) is A.(s) Ap(s) before any pole-zero cancellation is
performed, Siﬁce Nl(s)/Dl(s] is in irreducible form, it is clear
by (6.3) that ﬁ(s) simply consists of all those factors that were
cancelled in getting the irreducible Nl(s)/Dl(s) form. Therefore,
in this case, if all the common factors in (6.2) are left
uncancelled, the zeros of (6.2) alone determine the stability of
the system. Unfortunately, the same conclusion is not tfue.in
geqeral if zero minor(s) of Gp and (or) Gc exists. Furthermore,

if "all" the common factors are left‘uncancelled, erroneous results

can stilllbe'obtained as was shown by Chen in (7).
However, it is found (see Appendix B) that if
1. cancel{ations are selectedlsystematicﬁlly‘py ﬁsing (4.5},
2. poies of G are carefully selected,
then (§.2) alone determines the stability of the gystem.
Since (1) above can always be done and (2) can_be:takeh care of
fairly easily in the process of design, the mafﬁematical

possibilities in which zeros of (6.3) must be considered can be

'bypassed.
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Thus, det(I+Gch) =0 (6.4)

will be referred to ac the characteristic equation for multi-

variable systems as shown in Figure 2.1,
Details are given in Appendix B.
6.2 CONNECTION BETWEEN SINGLE-LOOP AND MULTIVARIABLE CASES

For 2x2 plant GP,.and 2x2 diagonal G.»

det(I+GLG.) = 1+2,118c11%8p78022% (det G lecyg8c02 - (6.5)

which can be factored as

- | 8p2pt(det)g gy |
det(I+Gch) = (1+gp11gc11) [ 1+ P1+ P Eco2 | (6.6)
: ‘ Ep118c11 ‘
= [1+gp11gc11) (1+Gquc22) (6.7)
[ detqﬂ‘ ]
+(detG 1+ .8
where G 4 gp22*(detbylecyy _ 8pap 8pap “Cll] (6.8)
1+g,118¢11 1+ep118c11 |

By (6.7), the roots of the characteristic equation are simply the

zero; of ﬁhe rational function (1+gp11gc11] (1+Gquc22)f
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It is also clear by (6.6} that for non-trivial cases (Geq(s)i 0),
all the zeros of the first factor will be cancelled exactly by
some of the poles of the second factor. Therefore, the roots of

1+G = 0 - (6.9)

eq 8c22

will determine the stability of the system.

The similarity of the form of (6.9} to that of (6.1) suggests
immediately the possibility of applying the single-loop methods
mentioned above to multivariable cases. But, unlike the

g, in (6.1), which is known for a given plant, G of (6.9) is not

p eq
a known function. Hence, neither Bode plot nor root loeus for

Geq can be drawﬁ at this stage. By inspection of (6.8), the only
unknown function contained in Geq is 8c11- We can; of course,
choose an arbitrary function for Be11 thén the only unknown
function left to be desighed is g.22» and the design is reduced to
that of the single-loop case. For example, let €11 be ﬁn
arbitrary constant, say 3, then fgr any given plant, Geé can be

obtained through (6.8), and the design of .22 can be carried

through by using (6.9).

However, in doing so, Geq may turn out to be very unstable, which
will make the design of Ec.pp eXxtremely difficult. Therefore,
instead of choosing it arbitrarily, a guide in designi—ng‘gcl1 is

preferable.
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By inspection of (6.8), it can be seen that the roots of

1 + det G . gc11 = 0 (6.10)
gpzz -
and 1 + gpllgC].l = 0 : | (6.11)

constitute part of the zeros and poles of Geq’ respectively.

Again, both.(6.10) and (6.11) are of the standard form (6.1).

Furthermore, det_Gp/gP2 and gpil are now known functions.

2
Therefore, anf single-loép method be used in designing géll’
to place the roots of (6.10) and (6.!1) at desirable locations.
Since these roots will be part of the poles and zeros of Geq’
what is meant by placing them at desirable locations is that
8,11 should be designed such that these roots, tqgether with the
other known poles and zeros (see (6.8)) form é reasonably good
pole-zero pattern for Geq (i.e., Geq is not badly unstablej.
Opce gcil is designed, all the Foles and zeros of Geq are knbﬁn,
~and the problem of designing ez is, by (6.9), reduced to that

of the single-loop case, and can be done by either Boede's or

root locus method.
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In summary, what has been accomplished so far is that the effect
of €c11 ©ON the'pﬁle-zero pattern of Geq and hence on the design
of gczz.can be seen through (6.}0) and (6.11)., Therefore, (6.10)
and (6.11) serve as a guide in designing £.11 in order to make

easy the design of 8coy"

Because of the standard forms involved, both Bode's and root locus

design techniques can be applied. For better insight of the

problem, the root locus method will be cqnsidered primarily.
6.3 . IDENTIFICATION OF POLES, AND ZEROS

Since the design will be concernedlwith'(é.Q), the poles an& 2eTo0s
of Geq(s) must be welllidentified, and the problem of pole-zero
cancellation must be considered carefully. This can. be done
generally by considering the sum and ratio of the.foliowing two

rational functions GI(S) and Gz(s]:

GI(S)Q: 5. (s | ' ‘ | ' (6.12)

N,(s)

—‘Dz'(—Ts . _ (6.13)

GZ(S)g
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Where Ni(sL Di(s) are the numerator and the denominator polynomials
of Gi(s) (i=1,2),also note that Nl(s), Dl(s) here are different

from those in (6.2).

For'simplicity, the argument s will be omitted in the following

discussion.

Let D12 be the greatest common factor between D1 and DZ' and

Dli' D22 are the remaining factors as shown below:

Dy =Dyq Py, o

(6.14)
By = Dy, Dy,
Then, the sum of Gl and G, is
G1 + G, = ﬁl . El
- Ny Dpp + Np Dyy -
‘ (6.15)

Dyy Dyp Do

Note that D11 D12 022 is the least common multiplier of Dy and Dz.
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Now, consider the sum 1 + G,/G;, by (6.12), (6,13) and (6.14)

1+E_2.=1+N_2 E_
G
-1+ N2 P12 D1y _
D22 Dys Ny (6.16)

If the common factor D12 between'D1 and D, is cancelled, and no

2
other cancellation is performed, (6.16) becomes

[

1 + 82 _ DppNy + DygN,.
Gy D,, Ny _(6.17)

The numerator of (6.17) is exactly that of (6.15), Therefore,

the zeros of G1+G befere any possible cancellation by the poles,

2!
G
2
would be the same as those of 1 + a_,if 912 (and only 912) is

1
cancelled. No other cancellation in G-2/G1 is allowed, even if it

can be done. Otherwise, some zero of (6.15) would not appear in

(6.17) .

Therefore, if only D, is cancelled in forming G,/Gy, the root
locus for:GzlG1 would give all the zeros of Gl-v-G2 if no-
‘cancellation is done between the numerator and the denominator of

(6.15).
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‘Let PG = {""'} and Z4 = {**'} denote the set of poles and zeros of
the rational function G, where the multiplicity of each pole or

zero is counted, e.g.,

(s+3)3(s+5)2

let G(s) =
s(s+1)2(s+2)
H(s) - (5232(s25)°
52(s+1}3(s+2)
then
PG,= {0,-1,-1,-2}
ZG = {-3,-3,-3,-5,-5}
j : (6.18)
PH = {0,0,-1,-1,-1,-21}
ZH = {-3,-3,-5,-5}

Also, let slfj So denote the intersection of the two sets Sy and
Sy defined as in set theory only that multiplicity is taken into

account here, e.g., in (6.18)

P.M Py = (0,-1,-1,-2}

ZGn ZH = _{‘31‘3;“5"5} '
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Furthermore, sl+52 is defined to be the set consisting of all

the elements of sy and those of So, (counting multiplicity), e.g.,

in (6.18)

P * Py =1{0,-1,-1,-2,0,0,-1,-1,-1,-2}

Similarly, s ;-s, is defined to be the set formed by taking away

all the elements (counting multiplicity) of s, from sy, and is

2
defined only when s, is a subset of s;, e.g., in (6.18)

)
]
o
#

{0,-1} -

{-3}

™~
(2]
t

™~
=4
i

By using these notations and by inspection of the denominator of

(6.15), we have
PG1+Gz = P6y*Peym (e NP6y - (6.19)

Similarly, by comparing the numerators of (6.15) and (6.17), we
have |
G

z .z 2 ' \ ]
Gy+6; = 21, o (6.20)
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The poles and zeros for the ratio'Gz/G can also be obtained in a

1

similar way by'inspecfion of the second term in (6.16)

p - _ 2. +P
GzlG1 = "G G

*Pe, - (Pey NP6y - (6.21)

z Zn +P - (P P '
6,76, = 26,*P6; = (%6, ] Pcy) (6.22)

Note that in (6.19), (6.20), (6.21) and (6.22), D12 is cancelled,

and no other cancellation is performed.

The application of (6.19%), (6.20)}, (6.21) and (6.22) will be
illustrated through a design e*ample in the next section. At
present, however, (6.20) will be used to justify one statement
‘pointed out in Section 6.2, i.e., the roots of (6.9) will determine.

the stability of the system.

Let G 1+g

pi118c11

(3]
il

2 = Bpppt(det Golg.qy
then (6.5) becomes

,det(I+Gch) = G

1*628.5, | (6.23)
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By (6.20],
Z Z G
G +G = 2
1 £ =<
25c22 1+G1 Be22

if the common factors between the denominators of G, and G28ea

(and only these common factors) are cancelled.
Since G2/G1 = Geq by (6.8),

21 _G_g. : = Zl"‘G
+G1 822

Hence, the zeros of (6.23) are exactly the same as those of:
1+Geq'gc2? i.e., the roots of (6.9) aré thelsﬁme as those of the
characteristic equation (6.4). Therefore, ﬁhey do‘determine the
stability of the system (ﬁnder the restrictions given inl -
Appendix E). No pole would be lost on account of the factorization

and the using of (6.19), (6.20), (6.21) and (6.22).
6.4 DESIGN EXAMPLE

Consider the 2x2 plant

5+3 4
SiS"'Ii 5"‘1
G =
P sfz __i_ (6.24)
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For diagonal Gc’ the characteristic equation (6.4) is, by‘(G.S)

1485118.11% 82280227 (98t Gplcii8e22 = O | (6.25)

By the factorization (6.7) and the discussions in Section 6.2 and

Section 6.3, the design philosophy follows:

1. Design gc11 according to (6.10) and (6.11), to achieve
a reasonably good pole-zero pattern for Geq;

2. Design 8c22 according teo (6.9) to meet system specifica-
tions.

where (6.9), (6.10) and (6.11) are repeated below:

-0 | | (6.9)

1+Geq'gc22
1+§§§§2_3611 =0 | | (ﬁflﬂ)
1+gpllgc11 = 0 .l ' (6.11)
By (6.24),
= 5+3

gpll s(s+1) o . ' - (6.26)
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g =_ 2
p22 S (6.27)
"detG_= _ 14524105412
52(5+1)(s+2) _(6-28)
detG
— 2
= 14s°+10s+12 ,
Bp22 |- 3 - = 2)
s (s+1)(s+2)
= 752+55+6 ‘
s(s+1)(s+2) S (6.29)

Note that the common factor s between the denominators

of det Gp and gp2

of diagonal G, is allowed in this example, since

2 is cancelled. Alsoc note that the use

multiplicity of each plant pole is not reduced in the

minor det'Gp {see Appendix B).

Let G1 = 1+gp11gc11 " (6.30)
G2 = gp22+[detGp)gc11 ‘ o (6.31)
. then, by (6.8},
G, =982
{(6.32}

€q

]
[y
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The poles and zeros of Geq are by (6.21) and (6.22),

P

- Z Pr _.P P
T6eq = T61+76,-( 6, Ps))
(6.33)
A _ Zp P (P P
Geq = 26,+P6,-(P6, N Fg )
The poles and zeros of G; and G, are by (6.19) and (6.?0);
P _ P . P P = p
G]_ = gpllgcll = gp11+ gcll = {0,-1}+ .11 (6.34)
Z _Z
Gy = "8 118011 (6.35)
P _ P P P P
= {0}+{0,0,-1,-2}+F Be11” [{O}rj ({0 0,-1,-21+Pg 11)]
= {0,0,0, -1, -2}+ gcll ~{0}
= {0,0 -1 -2}+.gc11 ‘ ‘ (6.36)
ZGz - 21 detG Bogr ‘
—“—Eg (6.37)
p22 |

By (6.34) and (6.36),

P Pg. - P _ | |
6, NP6, = (0,-13+Pg ; = Pg, (6.38)
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Then by (6.33),

P = Z | +{0,0,-1,-2}+p -EO,-1}+P ]
»o o 11
Geq 1+gp11gc11 ' g cll
* (6.39)
= Zl +{0,-2}
*8p118c11
. - detG
26 =g, = 2,9°%6p,  (6.40)
eq 2 g Be11
p22
~ Thus, Geq has two known poles at s=0 and s=-2, the other poles are
the roots of 1+gﬁllgc11=0’ which is (6.11). The zeros of Geq are

detG

p22

simply the roots of 1 , P‘gcll =.li),_'which is (6.10).

Then, the design procedure follows:

1. Prepare the root loci for

1+k1gp11
detG

and 1+k1__._.._2 = 0
gp22

where k1 is a real parameter, The result is shown in Figure 6.1

and 6.2. The loci for positive and negative values of k; are

représented by solid and dashed curves, respectively,
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The Toots of Figure 6.1 will be poles of Geq’ therefore, for
negative values of.kl, there will be one pole of Geq in the
right half plane (on branch @).  Similarly, by Figure 6.2,
a zero of Geq will be in the right half plane(on branch @) if
k1<0. This is certainly undesirable. Thﬁs, negative ky will

not be considered.

Mark down the known poles s=0, and s=-2 of Geq on Figure 6.3
‘and superimpose the loci of Figure 6.1 and 6.2 corresponding
to positive'k1 on top of it. Note that roots on branch @

and @ correspond to poles and zeros of Geq’ respectively.

Increase the value of kl from 0 to =, and observe the change

of pole-zero pattern., It can be seen that

(i) 0<k1<<5 is not desirable, since the polesrwill be

clustered together near the origin.

TO(ii) k1>>5 is also not desirable, since the pole on bfanch(?
will be pushed into the negative real axis, hence,
dominant roots of (6.9) will probably be determined by
the two known poles s=0, s=-2 and.the zeros on branch Q,

which are too close to the origin.
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When kl;S, the roots on branch @ which are the zeros of Geq

will be close to the two zeros on Figure 6.2 and the pole on
- branch (D is as shown, Another zero, by Figure 6.2 will be on
the negative real axis at aﬁout 5 =. -35. This pole-zero
configuration looks to be the best, since it is possible to
confine the roots of 1+szeq = 0, corresponding to the two
poles s=0 and s=-2 and the two conjugate zeros, to be on the
negativé real axis. And at the same time, the root of
1+szeq = 0 on the branch starting from the pole at k;=5 will

be someplace to the upper left of the'pole, which is a good

location for dominant root. Therefore, try k1=5.

Once klés is determined, all the poles and zeros of Geq are
known. The rootllocus gain (seé'Appendix €) of Geq’ denoted
by k

is found.as follows:
eq _

Bp22t(detGplg g

G =
€q -
148511811

14s%+10s+12
sf(s+1)(s+2)

— -

2
= 5
s

+' 5+3 *
s(s+1)

_ ._253_‘_---

st

-2(s-27)(s-23) (s-23)
(s-p1) (s-p3) (s-p3) (s-py) o (6.41)

!
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where z., and p; are the zeros and poles. By inspection of

(6.41) and the definition of roof locus gain, we have

The root locus for 1+k26eq=0 is then drawn as shown in

Figure 6.4. The choice of k, is now strictly that of a

2
single-loop problem. It is easily found that the two small

. real roots meet each other at about kzkeq = 0.36, i.e. k2=

.0.36
= - 0.18'

€q :
on branch (J will be ’at approximately the breakaway point and

For this value of kz, the smallest real root

will hopefully be the best among all the possible locations
on this particular branch. The root on branch @ corresponding
to kzke = 0.36 is also shown in Figure 6.4, It is seen

q
that this is a pretty good dominant root.
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The schematic for the designed system is as shown in Figure 6.5.

s(s+1) -]
. -
rl .
3
s+2
: 4
I s+1
-0.18
L.. _2 4
, 5 72
FIGURE 6.5

The simulation result is shown in Figure 6.6, in which r,=10 and

1
r,=5 were used as reference inputs and the time responses for the

two outputs ¥Yq and Yy, are as shown.

It is clear thét stability has been achieved. The transient
response of y, is very good, however, that of Yy is kind of siow.

If this is not allowed by the specification, a redesign is necessary.
However, as in the single-loop case, every trial, despité of its

failure, provides some guide for the next trial.
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In this exampie, it can be seen from Figure 6.4 that the roots on
branch I-are,compared with that on branch 2, very close to the
origin.. This is probably the cause of the slow response exhibited
in Y1- What we can do is put.pole(s) and zero(s) in gcll (instead
of just using a pure gain) to push the rooté ofIFigure 6.2 farther
away from jou axis; Then the two conjugate zeros in Figure 6.4 |
wili also be farther away from the jw axis and the resultant rodt‘
locus for Geq will move toward the left, thus improving the

transient response.

Incidentally, the steady states,of the outputs are decoupled. This
is because gp11 and gpzz are of type 1 and can be proved.very

easily by (3.18) and (3.22).
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7. DESIGN OF CLOSED-LOOP SYSTEMS WITH

3x3 PLANT AND DIAGONAL G

7.1 GENERAL

It will be shown in this chapter that the same design philosophy
given in Chapter 6 can be carried over to 3-input, 3-output
plant. Again, the central idea is in the factorization of the

characteristic equation det(I+Gch)‘= 0.

Fof 3x3 Gp and diagonal 3x3 Gc,,the system configuration is as

shown in Figure 3.2 and the characteristic equation is by (4.5),

det (I1+6,G, ) 1+gp113c11+$pzzgczz+gp338c33+(GPJ333c113c22

=0 | | o .a)

where (Gp)ll, (Gp)22’ (Gp)33 dgnote the cofactors of gpil' gp22

and gp335 respectively.



(7.1) can be fﬁctored as

(1+gb118c11) [1+gP22+(GP)33g611

M*ep118c11

+(Gp)11+(detGp)gc11

Beo2

14+gp118c11
By defining,

Gial+e,118c11
288,55 (Cp) 338011
C388,33%(Gp) 228011
Gdg(Gp)11+(detGp)g¢11

(7.1) and (7.2) become

G

Gl 1+-(.;_2 +E_§_ "‘9_1 B =0
Glgczz Glgcss Glgczz Bc3s

1*628.22%638.33*C48.928c33 = 0 .

77

LEp33*(6plaz8c1a

€c¢33
1+gp118c11
'gczzgcsz] =0 (7.2
(7.3)
{(7.4)
(7.5)
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Similar to the 2x2 case considered in Chapter 6, the roots of
{(7.4) will be exactly the same as those of:
Gy

G G :
2 3 _
1+£8 . 22+—28.33+—8c228.33 = 0

(7.6)

if the common factors between the denominators of G2 and Gl’
GS and Gl’ G4 and Gy (and only these common factors) are cancelled

in GZ/GI’ G3/G1 and G4/Gl, respegtivgly.

Thus, if the poles and zeros of GZ/GI, G3/61 and G4/Gl are obtained
through (6.21) and (6.22), which were designed to meét the above

cancellation restrictions, the roots of (7.6) are the same as those

‘6f the characteristic equation (7.1).

By defining

GZ ='Ep22+(Gp)33gc11

Gy 1+85118¢11
Gz 8533+ (6 )558.1)
Fo b " 71, (7.8)
1 Ep118c11 _
F G4 . (Gp)11+(detGp)gc11 _ o 7
SAE; 1+g . 7 ) ( .9)

p118c11
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(7.5] becomes

1+F 180224 F28c33*F38c28c33 = O | (7.10)

(7.10) is of the same form as (6.5), therefore, the same

factorization can be done on (7.10) to give

‘F,+F

2'F38c22

(1+F g )} [1+_—__._._g ]:0 (7.11)

, 1%¢22 c33
1+918522 ,

Again,_by (6.20), if the common factor between the denominators of

F,+Fzg.,, and lfFlgczz (and only this common factor) is cancelled in

p F2*F38.29

eq = (7.12)
q 1+F1gc22,
the roots of (7.10) will be the same as those of
1+ Geq'gc33 =0 (7.13)

Since (7.10) is simply (7.6), and the roots of (7.6) are the same
as those of the characteristic equation (7.1), if (6.21) and

(6.22) are used in determining-the poles and zeros of F

1 FZ and

Fz, the following conclusion can be made:
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The roots of (7.13) are the same as those of the characteristic
equation (7.1), if (6.19), (6.20), (6.21) and (6.22) are used in

determining the poles and zeros at each stage.

Thus, stability design can be considered through (7.13). The
form of (7.13) is exactly that of a single-loop characteristic
equation (6.1). Therefore, similar to the desigﬁ of 8022 for the
2x2 case in Chapter 6, any single-loop design method can be applied
in designing Eex3 oncé all the poles, zeros and fhe root locus
gain of Geq are knoén. |

The ingredients of.the poles gﬁd zeros Of.Geq can'be_found by
substituting (7.7), (7.8) and (7.9)_into (7.12) to express Geq in
"terms of the elements of Gp and Gc explicitly. .However, due-to
the fact that soﬁe cancellations-must be done while some others
are not allowed, this approach méy soﬁetimes lead.to an‘errﬁneous
result. Therefore, the analytical schemes (6.19), (6.20), (6.21]

and (6.22) designed to take care of the pole-zero‘cancellations,

are recommended.
By applying (6.21) and (6.22) on (7.12), we have

2 + P P P N
1+F 18000 * TEprFaR,y T (PFyeFagcnn N P1er g 00y (7.14)

eq

z
eq - 2*F38c2

[y}
L]

+ P - (P P
14F18cy5 ~ (PFpeFigeyy M P1eF 8.5)) (7.15)
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{7.14) tells us that the roots of

.1 + F =0 (7.16)

18¢22

constitute part of the poles of Gg

q'
Also, by (6.20),

z . _ 2, Fg

Fa*F3'8cgp = 12822

: 2.

Hence, by (7.15), the roots of

‘ £ ‘ _

3 = .
1 + i‘__E.gczz =0 _ (7.17)

constitute part of the zeros of G,

These justify what can be seen by inspection of (7.12). Actually,
the§e were done by inspection in Section 6.2 (seé (6.8), (6.9),
(6.10) and (6.11)), before the development of (6.19), (6.20),
(6.21) and (6.22).
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Thus, root loci for (7.16) and (7.17) identify part of the poles
and zeros of Geq’ and similér to the 2x2 case in Chapter 6,

these root loci can be used in the design of 8e22 (note: this

c2
corresponds to g.11 in Chapter 6, compare (6.10), (6.11) with

(7.16) and (7.17)).

However, unlike the 2x2 case, these two root loci cannot be drawn
directly, since F; and F:/F, depend on gc11+ ¥hich is also to be
designed (hence not known yet!). The dependences of Fys Fy and
Fz on g_,, are given in (7.7), (7.8) and (7.9).

Again, by repeated application of (6.19), (6.20), (6.21) and

- (6.22) on (7.7), (7.8) and (7.9), or simply by inspection, it can

be seen that the root loci for

1+ gp118c11 =0 ' : (7.18)
' (G,)
p-33 =
and 1 + - gc11 0 _ . ) (7.19)
p22

give part of the poles and the zeros of.Fl, respectively,
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And the root loci for

(6,023

+ . gC].]. = 0 y . (7.20]
p33
detG . . :
and 1+« ____P ¢ 11 ° 0 ) (7.21)
' (Gp)ll ¢ '

giVe part of the poles and the zeros of F3/F2, respectively.
Now, let's look back and see what we've got:

1. We concluded that roots of (7.13}.aré the same as those of the
characteristic equation (7.1). Therefore, the design of chS‘

can be done through (7.13) if Geq is known.

2, Some of the poles and zeros of Geq are gdjustable through Bcaao
and the relationships are given in (7.16) and (7.17); Thus,
the effect of gczé on the pole-zero pattern of Geq and; hence,
on the design of B.33» Can be seen through (7.16) and (7.17).
Therefore, (7.16) and (7.17) serve as a guide in designing
g to make the design of géss not formidable. This is exactly

c22
what was obtained in Section 6.2 for the 2x2 case.
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3. Simnce both (7.16) and (7.17) are of the standard single-loop

form (6.1), Bcgp can be designed if Fy, and F3/F, are known.

4. Again, some poles and zeros of F; and FS/Fz'are adjustable
threough Be11? and the relationships are given in (7.18),
(7.19), (7.20) and (7.21). Thus, the effect of. .91 On the

"pole-zero pattern of F1 and FS/Fz’ and hence on the design of
.57 2N be seen through (7.18), (7.19), (7.20) and (7.21).
Therefore, these four equations can be used as a guide in
designing £o11°

Thus, it is clear that (7.16), (7.17), (7.18), (7.19), (7.20)

and (7.21) are important in stability design. By the standard

forms they assume and by their simiiarity to those in Chapter 6,

it cam be concluded that root loci for these six equations can

help us design 8c11 and.gc22 to get a stable enough Geq such_that

gcss‘ﬁan be designed according to (7.13).

Since gpll’ gp22’ gp33’ (Gp)ll’_(Gp)EZ’ (Gp)33 and detGp are known
for a given plant, the four uncompensated root loci (i.e.;'gc11=k,
a free parameter) for (7.18), (7.19), (7.20) and (7.21) can be
constructed right after the plant is given. However, the other two

root loci for (7.16) and (7.17) cannot be drawn until after 8c11

is designed, since bot_hF1 and F3/F2 depend on B.11- As mentioned
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before, F. and F3/F, have some poles and zeros other than those

1
given by (7.18), (7.19), (7.20) and (7.21). Therefore, the
identification of these poles and zeros is hecessary, both for
constructing root loci for (7.16) and (7.17) and for guiding the

design of €c11- This constitutes the topic of the following

section.
7.2 IDENTIFICATION OF POLES AND ZEROS

As mentioned in the previous section, direct algebraic manipulation
may lead to an erroneous result; so let's apply the analytical
schemes (6.19), (6.20), (6.21) and (6.22) to identify all the poles

and zeros we are interested in.

The expressions for all the poles and zeros of Geq héve already .
been given in (7.14)_an§ (7.15). The poles and zeros in the sets
zl+F1gc22 and ZF2+F3gc22 are the roots of (f.lﬁ) and (7.17),
respectively, and can be taken care of by the corresponding

root loci. The other poles and_zeros left to beridentified are

respectively the elements of the following two sets:

Pe +F -

P : P

lgc22)

, {(7.22)
P - P P '
1+F1gc22 ('F2+F33c22 r) 1+Flgc22)
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In order to express these explicitly in terms of the poles and
zeros in the plant Gp and the compensator G., repeated applications
of (6.19), (6.20), (6.21), and (6.22) on 1+F1gc22, szFsgczz,

F F3/_F2 are necessary. The results can be written down by

1’ Fz)

inspection as follows:

p = P + P, "+ P - P P
"FptF38cpy Fo 0 F3 7 TBcp2 - CFy ARSFTIPPY
(7.23)
P = P + P :
1+F18.05 F1 0 TEc22
P = Z + P
F1 1+gp11gc11 gp22+(Gp)33gc11
P NP -
Z = Z + P X
Fy €522 (6p) 33811 14211811
' (7.24)

- P P
lvg, 1811 n 8p22* (Gl 338011}
= 7 + P

- (P nr
{ 1+gp11gc1-1 n gp33+(qp]22gc11}

o
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z = Z B’ + P
By TBp3zt(6p) 508011 I*Eh11%c11
- P P
U irenyi8e1 N 8533 (0p)228cq, !
e, = %145 .. g * Peg ), +(detC )g
3 pl1fcll P11 P “cll
(7.24)
P P,
Ulegoiigen N (Gp)yp+(detGle 4,1}
2. T 2(6.). . +(detC + Py |
Fs3 pli1*(detlrle gy *85118¢11
- ¢P P '
{ l*gpllgcll n (Gp)11+(detcp)gc11}
where
P (o) " Py *Peg 4P
8p22" "Up’338c11 Bp22 Bplizz 8.y
- P P
{ gp22 (Gp)Ssgcll}
P e (6 )28cy; = Po < *P (G ),," T
p33” “Upl228c11 Bp33 pl22 Bc11
(7.25)

-.P p

Uepas N (Gp)a28c11)

P(G );,+(detG g - P(G )., P (deta_)*P ‘
p-11 P ®cl1 p’l1 p’ &

cll

- P
{ (Gp)ll n P(detGp)gcll}.



P1+ P +P
€p118c11 Ep11 8.1

Also

o
n

32 2

A =2 +P. -,P p

7. +P_ -_P P
P, PEs (CF, N Fy)
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(7.25)

(7.26)

By proper substitutions of (7.25) into (7.24), then (7.26), (7.23)

and {7.22), the poles and zeros of interest can be identified.

This will be illustrated through a numerical example in the

following section.

At present, however, some simplifications on the above general

expressions can be made. It is observed that if,

P c: P
: G
gpzz ( P)33

p C P
Ep33 (6p) 5,

P(GP)IIC: Pietc

(7.27)
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where A (C B denotes that set A is a subset of set B, again multi-

plicities of the elements in each set are counted,.

p ne =P
€p22 (6p) 33811 Ep22

Pe)

P = P
P 11n (det6Jecyy (601

P P = P
 Bpas n (6p) 58c11 £p33

then (7.25) becomes

p = P +P
8p22*(6p)338c11 (Cplsz Eemn

P

P : ‘= P +
gp33* (6plaz8c11 (Gplaz Eemn

P = P +P
(Gp)11+(detGp)gc11 (detGp) £.11

P ‘ P +P
o lvgn118099 Ep11 Bci1l

Then, we have

(7.28)

(7.29)



and
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P ’ P = P +{p P }
1+gp11gcll n gp22+(Gp)33gc11 Bc11 gpll n (Gp)ss

P P .2 P, (P P o
'1+gP118011 n gP33+(Gp)223c11 = Ecll gp11 r] (Gp]22 (7.30)

P : P _ _P P Y P - }
l+g 18,11 n (Gp)11+(detGp)gc11— gc11+{ Ep11 n (C.’letGp)

pl

(7.29) and (7.30), (7.24), (7.26) become

P Z - ‘ P
Fqy= 1+gP11gc11+P(Gp)33 {pgp1; N (Gp)33}

Zp =% +P -{p, . AOP )
Fi="8p22* (6p)338cq; " p11” TEp1a (17 (6p)ss

Pp _Z p -{P Y P
Fp= 1+gp113311+ (Gp)22 ¢ Ep11 n (Gp)ZZ}-
(7.31)

+P

- }
gp11

s Z

- | P
Fa= 2533%(65) 228011 ¢

ne

gp11 (Gp)ys

Pp .2 +P -y~ {P P }
Fy=llegpi18q1 T (det) " Uapyy N Paets,)

3

Zp _Z +P - P }
Fy=2(6,) 107 (det6 Jgcqr” 1, Papyy N Praetc,)
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and

P _Z

+P P }+P
Fa/Fp="8,35% (Cpla28c11 gpll gpllr] (65) 5, *F (detGy)

-{ng np(detG y - {p(detG )¢ gpllnp(detﬁ ))}n

- P }
(7.32)

Z +P P +P
Fy/F,=2(6 p)11* (detG, )gc11 gpll -{P gpllf] (detG IRAR (ISP

-{p }- P )
gpllrl fsg)zz ; (detGp) (Vgp11r1 (detGp)) f1
p - .

i’

Once a plant is given, P(G ) ‘{pg N } is a known set.

P
pl33 p11+ (Bplss

Therefore, by Pp 6f (7.31), all the poles of F; are well

1
‘jdentified. They consist of all the roots of (7.18) which are
adjustable through 8c11 and some other fixed poles given by the

above set which is known.

Similarly, by inspection of (7{31) and (7.32), all the zeros Qf
FI, all the poles and zeros of F3/F2 are well identified. Some-
‘of them are fixed, the others, which are the roots of (7.19),
(7.20) énd (7.21) respectively; are adjustable through Bc11°
Therefore, g.qq can be designed according to the four root loci
for (7.18), (7.18), (7.20) and (7.21), to realize a presumably

"good pole-zero pattefn for F; and F3/F2, such that the designiof
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£c22 according to (7.16) and (7.17) will not be formidable.

As anyone who is familiar with root locus designrknows, there is a
certain amount of trial-and-error inveolved. This is more so in the
multivariable case because of fhe successive dependence of the root
loci described so far. However, a little experience can alwéys
lead to good judgements that would reduce the amount of @he trial-
and-error. For example, in the design of Be11 described above, if
the root loci for (7(18), (7.19), (7.20) and (7.21) extend well
into the right-half-plane,'more sections for 8.11 is, in general,
recommended. Otherwise, it is very probable that the resulting

F1 or F3/F2 {or both] contaiﬂ poles and zéros well in the right-
half-plane, thus making g_,, difficult to design. This is, of |
course, a trade;off between gc11 and 8c22° If more sections of
compensation are used in 8c11° Fi and F;/F, can be made more
stable, hence, 1e$s sections are réquired in o227 Conversely, if
£c11 i# chosen to be too simple, more.sectiods should be needed in
Bc2a- Judicious choice can be made by investigating,thé four

root loci (7.18), (7.19), (7.20) and (7.21), and Boyg ©2M be

designed accordingly.

The poles and zeros of Ge can also be identified in .a similar
o q _
way. This will be clearer after the consideration of the numerical

example in the following section.

o
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7.3 DESIGN EXAMPLE

As was found in Section 7.1 and 7.2, géll can be designed according

to the four root loci

-0 | 7.18

1 + gpllgcll 0 | ( . )

1 + EEEl§§3c11'= 0 (7.19)
€p22

1+ (6plagg ., =0 (7.20)
Bp33

detG =0 (7.21)

1 + g o=
TE;T?T clt

And g _,, can be designed by the other two

1 + Fig 5, = 0 , (7.16)
1 + F3g = 0 (7.17)
?; c22 .

Finally, .33 is designed according to

1 + Geq'gc33 =0 . o (7.13)
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where F,,F,,F; and Geq are given in (7.7), (7-8).‘(7-9). and

{7.12), respectively.
The general design procedure then follows:

1. Identify all the poles and zeros of F,, F3/F, and Geq'
- 2. Prepare root loci for (7.18), (7.19), (7.20) and (7.21) with

 ch1 = kg, a free parameter.

3. By varying the value of k; from -= to =, observe the

accompanying. changes in root locations.

4. Choose the value of k; that corresponds to the best pole-zero
pattern for F; and F;/F, in the sense that 8.9, can be designed
most easily to give good pole-zero pattern for'Geq.
5. If no value of k; gives satisfactory F; and F3/F,, use pole-
zero pair as necessary in €.11 to pull the loci toward the left
and determine the gain value for best pole-zero pattern for
Fl and FS/Fz'
6. Construct the root loci for (7.16} and (7.17), uSing'gc22=k2’

a free parameter.
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7. Adjﬁst k, as in 3 to find best pole-zero pattefn for Géq' Put

in poles énﬂ zeros as necessary,_as in 5.
8. Construct root locﬁs for (?.13).
9. Design B.33 to meet specific#tions.
Consider the S-infut, 3-outpuf‘p1ant {3,33) repeated below:

gp11(5]=0.081(s—0.205)(s+0.967+j1.379)

(5+0.967-31.379) /DDy

gp12(5)=—6.12(s+0.837)(s+ﬁ.947+j1.144)
(5+0.947-31.144)/D Dy

gp13(5)=-202(s+1.385)(5513.037)/D'DE
~gp21(s]=~p.00163(s+2.881)(s+0.032+j0.313)
(5+0.032-50.313)/D Doy
‘gp22(5)=-Q153(s+0.824)(5-0.047+j0.205) (7.33)
(s-0.047-50.205)/D-Dy
gpzs(s)=-9.o7(s+26.339)(s+o.03+jo,361)
(s+0.03-50.361) /D-Dp

gp31(s]=_0.00209(s-1.049)(s+0.268)/D'DTH

' gp32(5)=0.0995(s-0.12)(s+3.485)/D-DF

(s)=-235.5(s+0.361+30.076
sp33 3 )

ts+o.361-jo.076)/n-nE
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where

D(s)=(s+0.018+j0.336)(s+0.018-30.336)
(s+1.103+j1.277)(s+1.103-j1.277)

DTH(S)=(S+0.99+jO.479)(s+0.99-j0.479)

, (7.34)
Dp(s)=(s+3.3+j10.49) (5+3.3-710.49)
DF(s)=s+1
.By‘manipulation,

V= . .36.85(s-0.096)
(Gp)ll ®p228p3378p238p327 " pDp 0y

- i . .-19.08(s+0.229) | |

(6,022°8,118p33 8p138 ;59 DDy Dy, o \ (7.35)

.8

_-0.0224(52+1.6565+0.694)

(G )33‘:8 g -£2 1 4 21°
P pil®p22 ®pl2®p D'DF"DTH

detG = 5.232
P DD D, Doy

By inspection of (7.33) and (7.35), it is clear that (7.27)

is true. Therefore, by (7.31),

+7Z D

_z
14285118011 D

ﬂ
[y
!

(7.36)

e >
]

z
1% TEpap*(6)s3Berr ‘
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P, _ 2 +2
A Fa = 1+gpllgcll Dg
(7.37)
Z I/
Fy = "8p33*+(Gplpa8eyy
| z +Z +7Z
F, = “1 D D
3 +gPllgcll E F
(7.38)
Z _ Z

where 2D = {(-0.018j0.336),(-1.103£j1.277)}

Doy = (-0.99%j0.479}
ZDE = {-373£j10.49)

Z -

Dp = {-11}

are the sets of the zeros of IJ(s), DTH(S)’ De(s), DF(S)-in
| . .

(7.34), respectively,

and note that (Gp)33 = ZD+ZDF+ZDTH, etc.,

and by (7.32) or by (7.26), (7.37) and (7.38)

Z +2Z
833*(Cpla28ey; Dp

B |
w
C e
-
[ ]
i

A oz o - - (7.39)
F3/F2 = (Gp)11+{detGp)gc11
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Then, by (7.23)

P +ZD.+ZD +P

_z
FotFs8 5, = "1*8,118c11 Pe "Pp o 8c22
(7.40)

p _z +Zp +P
1+F18c22 = "1*8555811 Dp 822

- Finally, by (7.14), (7.15) and (7.40), we have

Pg
eq

+ZD

.
1+F
1gc22_ E

(7.41)
Zg . 2
eq

F2+F3g622 ‘

The outline of the design then follows:

1. Prepare the four root loci for (7.18), (7.19),‘[7.20)‘and
(7.21), using gc11=ki. These are shown in Figure 7.1 to
Figure 7.4 (note that dashed curves are the loci cofresponding

to negative kl).
By inspection of these loci, the following can be observed:
(i) k1<0 is undesirable, since for'negative ki, . there will

be one branch in each of these four plots that extends

along positive real axis to + = aﬁd.this will tend to



(ii)

(iii}

(iv)
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produce a pole-zero pair on positive real axis for

G which is certainly undesirable.

eq’
When k,250, there will be a pole-zero pair of Geq close
to the point (0.5, 1.5). The reason is that the roots
corresponding to k3350 on branch'® of Figure 7.1 and
Figure 7.2 are close to each other. ﬁy (7.36), these
two roots will be one pole and one zero of Fy |
respectively. Since they'are c1ose to ééch'other, the

root for 1+Fqg =0 corresponding to this pole-zero
18c22 pole

pair is very difficul't to  push far away from this

region, Thus, by (7.41), a pole of Geq will be
around (0.5, 1.5). Similarly, by Figure 7.3 and
Figure 7.4, there will be a zéro of Geq close to the

same point. Thus, a pdle-zero pair of Geq exists near

the point (0.5, 1.5) in the right-half-plane. This

will most probably cause the corresponding root of

(7.13) close to the same point, hence, undesirable.

. For k1>50, the situation is obviously ‘worse. Therefore,

the range of k; that remains to be investigated is

0<kq<50.

It can be seen that when k1 is too close to 0, the root

on branch (D of each plot will all be close to the

origin, hence also not desirable.
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When k1§10, the pole-zero locations seem to be the best. Thus,

try k1=10.

Using gc11=k1=10' const;uct'the root loci for (7.16) and (7.17)
with gc22=k2, a free parameter, The results are shown in
Figure 7.5 and Figure 7.6, respectively. By inspection of

these two plots, the following can be observed.

(1) k2>0 is undesirable for the same reason as that in

1(i) above.

(ii) . 0>k,>>-10 looks betfer than the other range, since the
root on branch @ in both Figure 7.5 and Figure 7.6
will be farther away from the ju axis, hence; more
stable.Geq can be expected (note that ?oots in

' Figure 7.5 and Figure 7.6 give poles and zevos of Ge

respectively, sée (7.41)).

(iii)  Although the root on branch () of Figure 7.5 will be‘
| "close to the origin for 0>k,>>-10, it .can still be
tolerated because the same fhing_does not happen |
in Figure 7.6. Thué,'the foot_of (7.13) corresponding
to this pol¢~zgro pair of Geq can still be a&justéd to

be not too close to the origin.
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4. The roots corresponding to g ,, = -1 can be read off from
Figure 7.5 and Figure 7.6. By (7.14), these cons;itute part of
the poles aﬂd zeros of G eq’ Together Qith the other known
poeles (roots of DE(sy-O by (7.41)), the root locus for (7.13)
can be constructed as shown in Flgure 7.7, with gc33 = k3; a
free parameter. By inspection, gc33 = kg = -2 is a good value.
Thus, we have determined all three compensator functions with only
gaiﬁ adjustments. The resu1t1ng system schematlc is as shown in
Figure 7.8. For the three step inputs ry = 126.7 ft./sec.,A
r, = -9.25 radian and Ts = ~0.5 radian, the simulation results for
the three outputs yl(t), yz(t) and y3(t) are given in Figure 7.9,
Figure 7.10, and Figure 7.11, respecfively. It is clear that the

fesulting system is stable.
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TIME RESPONSE OF OUTPUT Y1 IN FIGURE 7.8 WITH

r1=126.7‘u(t)

r2=—0.25-u(t)

r3=-0.51u(t)

u(t): UNIT STEP
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FIGURE 7.10
TIME RESPONSE OF OUTPUT y, IN FIGURE 7.8 WITH
ry=126.7-u(t)
T,=-0.25"u(t)
r3=-0.5fu(t)

u(t): UNIT STEP
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TIME RESPONSE OF OUTPUT Y3 IN FIGURE 7.8 WITH

r.=126.7'u{t)

1
r2=-0f25'u(t)
r3=-0.5'u(t)

u(t): UNIT STEP
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8. COMPENSATION DESIGN FOR STOL C-8A AIRCRAFT

" WITH STEADY-STATE DECOUPLING
8.1 GENERAL

The simulation results, Figure 7.9, Figure 7.10 and Figure 7.11,
for the system in Figure 7.8, justify that the root locus
technique developed in Chapter 6 and Chapter 7, can be used for
designing both the stability and the transient response of a
multivariable system, Stébility and traﬁsient response are
certainly the most important factors to coﬁsider when designing a
system, however, some other factors are also important. Among
them (e.g., steady-state accuracy, integrity, semsitivity, etc.),
steady-state accuracy is usually thé most important. In single-
lJoop theory, the restriction on steady-state accuracy ﬁsually makes
it impossible to adjust some parameters with compiete freedom. In
root locus terminology, root relocation zones(14)exist, which

limits some of our abilities to relocate those roots of interest.

For the multivariable case, due to the existence of mutual.coupling,
the problem of steady-state acéuraCy is more complex. This éan be
seen by comparing the steady-state values in Figure 7.9, Figure 7.10
and Figure 7.11 to the input commands. For gxample; idput Ty is

a step of magnitude 126.7 ft./se;., while the velocity output Y1 is

only 93.8 ft./sec. when steady-state is reached.
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One way to reduce or eliminate the steady-state errors in multi-
variable systems is decoupling the steady sfates of the system,.
TheAconcept of steady-state decpupliﬁg was developed in Part I

of this thesis, and the schemes obtained can be used directly to
determine what types of functions should be used in the compensator,

Then, results of Part II are applied to stabilize the system,
8.2  DESIGN PROCEDURE
The plant under consideration is the longitudinal mode of the

NASA STOL (Short Take Off and Landing} C-8A Buffalo Aireraft which

is a 3-input, 3-output plant as shown below in block diagram form.

velocity,

U, (th;ust, %) . - ' ————— Y, (ft./sec. )
flap angle, : STOL  _angle of attack
U2 (radian ) - C-8A = (ragian ")
AIRCRAFT .
elevator angle, .
U3 (radian _ ) L y (p1tch angle,)

3 radian

FIGURE 8.1

Thus, the plant can be represented by a 3x3.matrix GP. The transfer

functions g, , are given in (3.33) and (7.33).
- ij :
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By using the feedback configuration as that in Figure 3.2, a

steady-state découpling scheme was cbtained in Section 3.2 to be

tc11=tc22=tc33=1’ i.e.,
Be11(s) = L gl (s)
Bo22(s) = L glp(s) (8.1)
Be33(s) = é 8’&33(5): /

where, as defined in (3.10), numerators and denominators of
géll(s), gézzfs) and géssfs) do not _contain power(s) of s as

their factors.

(8.1) tells us th;t the introduction of one pure integrator in each
of the three compensator transfer functions will cause the steady
states of the system to be decoupled. Thus, one pole (at the
origin) is required in each of the three unknown functions gcll(s),
gczz(s) and chS(ﬁ)', The other-poles and zeros and the gain values
are unknown and have to be determined for stability and transient
response. The design of these unknowns can be done in exactly the
same manﬁer as that in Chapter 7; except that the existence of

the extra pdle (s=0) in each of gcll(s), Ecoa(s), and gcss(s) has
to be taken into account. Also note that the pole-zero expressions
(7.41) t7.36) {(7.39) are still valid, since the same plant is

considered. Then the design procedure follows:



110

1) Prepare the 4 root loci for.[7.18), (7.19), (7.20) and (7.21)

s _kj

with gc11=g— »

where k1 is a free parameter,.
These are shown in Figure 8.2 to Figure 8.5 (note that these
loci can be drawn by adding the additional pole at the origin

in Figure 7.1 to Figure 7.4).
By inspection, it is observed that

(i) k1<0 is not desirable, for the same reason as 1 (i) of

the design in Section 7:3.

(ii) For k,>0, branch D on all four plots are quite unstable,
which is the effect of thelintroduced pole at the origin.
By the same argument as that in 1 (ii) of the design in
Section 7.3, it.caﬁ be concluded that no fange of ki is

desirable.

Therefore, only one pole (at the origin) and no zero in go11 is
most probably not enough to give satisfactory system perform-

ance, some other pole(s} and (or) zero(s) are recommended.

5The argument s will be dropped whenever no confusion exists.
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By Spirule check, or by noting that any introduced zero (that.
goes with the decoupling pole at the origin to form one section
of filter) on the negative real axis cannot overcome the effect
of the pole at the origin, it can be seen that if only one
section of filter (pole at origin, zero on negative real axis)
is uséd, the situations will always be worse than those in
Figure 7.1 to Figure 7.4. Since that design was only marginélly
successful and the situations now are worse, several sections of

filter are recommended.

By spirule, or by inspection'(if experienced enough) it can be
seen that two sections of filters are enough to pull branch Q
in each of these four plots into the left-half-planeL Then

no poles and zeros of F; and F3/Fy are in the right-half-plane,
(Note that by (7.36), roots in Figu;e 8.3 are the zeros of Fl'
Those in Figuré 8.2, together with the known pole at s=-1, which
is the root of DF(5)¥0, give all the poles of F{. Similarly,

by (7.39), roots in Figure 8.4, Figure 8.5 and the known pole at

s=-1 give all the poles and zeros of F3/F2),.and the design of

.22 and g.zz can be continued in the same manner as that in

Section 7.3. However, by noting that each new root locus that
has to be constructed out of these four has also an additional
pole at Fhe origin (comes from 829 and Be332 see\(&il)). This
will tend to destabilize the results and make the design of
g.2, and .33 more difficult. Thus, try a three section lead

compensator.
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4) By spirule (or by inspection), three zeros close to the origin
and two poles far away from the origin can stabilize Figure 8.2

to Figure 8.5 to a great extent. For one specific choice,

2
_k1(5+1)(s+0.5)
fc11 S)Fs(s+4)(s+10)

where k; 'is a free parameter,

the results are shown in Figure 8.6 to Figure 8.9, Note that
the 1loci for k1<0 are not shown, since k1<0 is not desjirable

for the same reason as in 1 (i).

5) By inspection of these root loci and by considering the effect
of kl.on the pole-zero pattern of F; and F3/F2 (see (7.36) and
{7.39)), ky = 1000 is chosen for the same reason as in the
previous design of Section 7.3,  For this value of k;, the
root loci for Fl and F3/F2 can be drawn. Then, gcp2 can be
designed according to these two root loci and their relationship

with the poles and zeros of Ge (see (741)). By trial-and-error

ko(s+0.5)
. s

was found to be good. For this €c221 the root loci for (7.16)

{(or by inspection), Eco0™ (k, is a free parameter)
and (7.17) are shown in Figure 8.10 and Figure 8.11, Loci for
k2>0'are not shown since for k,>0, one branch in each plot

extends along positive real axis to + «, hence undesirable.

6) By inspection of Figure 8.10 and Figure 8.11 and by (7.41},

ko = -400 is a good value.
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7} Using k2 = -400, the rootlocus for (7.13) with 8:33

k3(5+40.3)(s+0.4) :an be drawn (see (7.41)), and g_z3 can be
s(s+10)
designed accordingly. The result is shown in Figure 8.12, from
which the best value for k; can be seen by inspection to be
k3§—20.

Thus, a design with

B.q1(s) = 1000(s+1)(5+0.5)%/s(s+4) (s+10)
gczz(s) = -400(s+0.5)/s | {8.2)
8. 55(s) = -20(s5+0.3)(s+0.4)/s(s+10)

is completed.

The schematic diagram for the designed system is shown in

Figure 8.13.

For step inputs of magnitudes 126.7 ft,/sec., —6.25 radian, -0.5
fadian in ry,r,, and T, the simulation results for Y1» Yo and
Y5 are shown in Figure 8.14, Figure.8.15 and Figure 8,16,
respectively. It is seen that bbth stability and steady-state

decoupling haye been achieved. Furthermore, due to the introduced
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pole at the origin in each of Byp? ®c22° and 8.33> the steady-
state error in each of the outputs is zero, which is the most
desirable situation. Thus, by decoupling the steady states,

steady-state accuracy has also been achieved as a byproduct.

o 2
L(s+1) (s+0.5) " 1
R e SRETST)) =7
' ‘ STOL . '
r2 + - _400_(s+0.5) - y
_ s C-8A / 2
. AIRCRAFT ’
. ‘
r3 -1_20.(S+0.3)(s+0.4)_—-—| -y
y s(s+10) 3

FIGURE 8,13
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9. CONCLUSIONS

9.1 COMPARISON OF THE RESULT IN PART I TO THAT OF STATE

VARIABLE FEEDBACK APPROACH

In part I, a constructive criterion for decoupling the steady states
of a linear time-invariant multivariable system was developed.
Transfer function matrix representation, unity feedbacks and

cascade compensation were used as . shown in Figure 2.1.

Another approach using linear state variable feedbacks was
jnvestigated by Wolovich (2). The result in terms of transfer
function matrix representation is given in Chapter 1, and repeated

here zs followé:

A system characterized by an (nxm) pfoper rational transfer
function matrix, GP(s), having no poles at the origin
{s=0) can be steady-sfate decoupled (via linear state
variable feedback or perhaps some other less.ambitious

scheme) if and only if
p(Gp(o)) =n ' (9.1)

vhere p(Gp[O)) denotes the rank of the matrix Gp(s) when s

approaches zero.
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Several advantages of the result given in Part I over that described

above are in order:

1. Cascade compensators and

implement than measuring

2. The rank condition (9.1)

2x2 plant (n=m=2):

output feedbacks are much easier to

the states.

is not necessary, e.g., given the

s i
s+1 s+2
G_(s) = (9.2)
P s 1
s+3 s+4

By (3.19), (3.10) and (3.

18), steady states can be dedoupled

by introducing two and one pure integrators in g ;4 and'gc22

in Figure 3.1, respectively._ However, by (9.1}, this cannot

be done through linear state variable feedbacks.

3. Poles at the origin in the given plant are allowed. Actually,

- such poles are very helpful for steady-state decoupling as

was shown in Figure 6.6 for the plant (6.24),

8.2 POSSIBLE GENERALIZATION OF THE SYSTEM CONFIGURATION

The discussion of this thesis has been restricted to the configur-

ation given in Figure 2.1. For

the general feedback~c6nfiguration

in which the unity feedbacks are replaced by a transfer function
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matrix G.(s) (nxn), the simple relation (2.5) is no longer valid.
However, if Gf(s)'is diagonal and nonsingular (in the field of
rational functions of s), which are of practical importance, similar

result to {2.5) can still be obtained as follows:

=
]

‘ -1
(1+6,6,6¢)7 6,6,

-1 -1
(1+6,6.G¢) " G,G GGy

-1

-1,
(I-(I+GchGf) ) Gg
Sincé Gf is diagonal, Gf-1 is also diagonal, Therefore, simple
expressions for the off-diagonal elements of H(s) can still be
obtained easily. Then, with a slight'modification, the results in

Part I can still be applied.
9.3  STABILITY AND DESIGN

In Parts 11 aﬁd 1171, ;tability of a lineér time-invariant multi-
variablg system was considered. A design technique, using an
extended root locus method was also developed and applied
successfully to 2x2 and 3x3 cases. The major achievement is the
revelation of the simple connection bétween single-loop and

multivariable cases. Such connections made the application of
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single-loop deSign methods to multivariable systems possible, as

was seen through the design examples in Chapter 6, Chapter 7 and

Chapter 8. Some other advantages of the design techniques are:

Consideration of integrity problems i§ possible in the
process of thg design by forming pertinent root loci.

This means that the system can be designed such that possible
failure of any loop (or combination of loops) do not cause

the system to be unstable (e.g., see (10}).

The problem of input outpuyut perhutation, like "which output
should be fed back to a particular input?" can be solved to

some extent by inspection.

More insight to the problem is achieved through the root -

locus apprdach.

The problem of meeting system specifications can be done in

the same manner as in any single-loop design method.

A few disadvantages, however, do exist. For example, the successive

dependence of each root locus on the previous ones causes more design

difficulty as the number of inputs and outputs of the plant increases.

Also, like the single- loop frequency domain methods, trial.and.error

is inherent in this technique.
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However, with the help of computers, these problems can be minimized
and the design can be done within a reasonable amount of time.
Besides, with some experience in handling the root locus, the effort

can be further reduced.
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APPENDIX A: FORMULAE (4.1) AND (4.2)

The proof of (4.1) can be done by applying Lemma A.1 in Appendix
A of (15) directly to the two nxn square matrices I and G. For
(4.2) however, direct application of this lemman has a little

difficulty.

For better analyticity, an independent proof using mathematical

induction has been developed. An outline of the proof is given

below:

1. (4.1), (4.2) are satisfied for n=2 and n=3 by direct
expansion.

2. Suppese (4.1) is true for n=N, (4.2) is trué for n=N+1,
then (4.1) is true for n=N+1.

3.  Suppose (4.1) is true for both n=N-1, and n=N, then (4.2)

is true for n=N+1,

Thus, starting from N=2, it can be induced that (4.1) and (4.2)

are true for any positive integer.

Details of the proof in_2'ahd 3 above are omitted.
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APPENDIX B: CHARACTERISTIC EQUATION

It was pointed out in Section 6.1 that the stability of a multi-
variable system as shown in Figure 2.1 is determined by the zeros
of both (6.2) and (6.3). It will be shown in this appendix that
if pole-zero cancellatibns are done deliberately, and if the
compensator poles are chosen carefully, zeros of (6.2) alone can
determine the stability. The constraints under which this is true
are very practical and can be fulfilled in 2 systematic manner.
Thus, the mathematical possibilities in which zeros of (6.3) musf

be considered are bypassed.

By the definition of characteristic polynomials given in Section

6.1, 4.(s) and dp(s) can be expressed'analytically as:

. il’vl-,i!’ ‘
8. (s)=LCD{G{ o l2=1, " ,min(n,m), 1gig<rr <ipsm,
. Jq1s sy

1$j1<°'-<j£sn} (B.1)

L ERE Y

Ap(s)=LCD{Gp s l2=1, "+ ,min(n,m), 1sij<-*-<i <n,
10 e _ . .
1;31<"°<stm} ' (B.2)
iy, 00i i1, i,
Where, as in Chapter 4, Gc G denote the

LY
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tth-order minors of Gc and G fo}med from TroOws il,”',iz and’

P
columns ji,"',jn_of each matrix, respectively.

LCD {+-+)} denotes the Least Common Denominator of all the rational
functions described in the brackets and all the minors are
assumed to be in irreducible rational forms.

il:l .:ig il: ..’il : il"..;il

» DP . i and
i, J1stttady,

jl:."sjg

« » oa i i " e u
] » 1°
1 % and Gc 2 respectively., Then,
Jl"_ 9]2 jl’...’jl

minors, G

. 1 ‘ -
o (sY=LCM{D | R Y =1, min(n,m) 1gd<r < gm,
Jl""’]m

14_:j1<"'<j <n} - {B.3)

L

i]_’ yi : - ‘
. Ap(s)=LCM{D le=1,""",min(n,m) lgij<---<i <n,
31,7770 ' ' _
1gjy<--r<jgogm} (B.4)

Where LCM {-.-} denotes the Least Common Multiplier of all the

polynomials'described in the brackets.
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These analytical expressions for Ac(s) and Ap(c) will be useful

later in this appendix.

For single-loop systems,

6, () = [8,0)],

6. (5) = [ ()] 1a1

4

Let Np(s), Nc(s), Dp(s), Dc(s) denote the numerators and the
denominators of gﬁ(s) and g.(s) (both in irreducible rational forms)

respectively, we have for (6.2)

‘N1(SJ ) Np(s) N (s) .
O I RO RN O] (8.5)

(Note that Nl(s)/Dl(s) is in irreducible form.)

Also, by definition of the characteristic polynomial,

Apté) DP(SJ_

a.(s) = D (s)



131

Hence, (6.3) becomes

ﬁ(s} _ Dc(s) Dp(s)
Dy (s)

(B.6}

t

The right hand side of (B.5) can be written as

Dp(s) D (s) . Np(s) N.(s)
D,(s) D (5)

Let Do(s) A Dp(s) Dc(s)
No(s) & D,(s) De(s) + N (s) N(s)
which are the denominator and numerator of (6.2) before canceilation

(if any). Also, let C(s) denote the greatest common factor between

Do(s) and No(s} (C(s}= 1, if no common factor exists), then

D_(s} = C(s) ' Dy(s)

o T (B.7)

Ny(s) = C(s) * Ny(s) |
By (B.6) and (B.7), we have:

. N (s)
Ny () = -ErEy |
' (B.8)
" Do(s)

N (5) = W= C(S]
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i

(B.8) tells us that the zeros of NI(s); together with those of N(s)

are the zeros ofANo(s)_alone.

Therefore, the following conclusion, which is well-known in single-

locp theory, can be made,

The stability for systems shown in Figure B.1 is determined by the

roots of

1+ g (s)g(s) = 0 . ~(8.9)

[

if and only if no pole-zero cancellation is allowed in (B.9), even

if a common factor exists.

] ey - 4
gc(SJ - gP(S) | |

FIGURE B.1

As an example, consider the system shown in Figure B.l with

. s=-1-
gp(s] T os+1

- 1
B.(s) = o
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By {(6.1) and (6.3),

'Nl(s] 5+2
Dl(s) - s+1
ﬁ(s) - (5-i1§s+1) - s-1

Since the zero of N(s) is in the right-half plane, the system is -

unstable.

By (B>-9),

1+ 1 _ . s-1
s-1 s+1 =0

If the commen factor (s-1) is cancelled, we havé‘§%%=o, Therefofe,

only thes=-2 pole is retained and erroneous conclusion that the

system is stable is reached.

(s-1)(s+2)

However, if (s-1) is not cancelled, we have =
s=-1)(s+1

0., .Hence,

both the'zeio of ﬂ(s) and ﬁ(s) are retained.

Therefore, for single-loop systems, if no cancellation is allowed,
(6.2) alone gives all the zeros of Ny(s) and N(s), hence determines

the stability.
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The following question then arises naturally: 'Can we use (6.2)
alone in determining the stébility of a multivariable system by the
same requirement that no cancellation is allowed?" The answer is

"no" as was shown by Chen (7) through the following 2x2 example:

Consider - 2 : ' .
-s“+s5+1 1
(s+1) (s-1) s-1
G (s) =| ' (B.10)
P 1 1 ‘
(s+1) (s-1) s-1
. -
G (s} =1 , (B.11)
where 1 denotes the 2x2 unity matrix,
Then,
2 1
det(I+Gch) = S -
(s+1)(s-1)%  (s+1)(s-1)2
- (s+1)(s-1) | (B.12)
(s-1)2(s+1) - '
There exists a right-half-plane 2ero in (B.12) at s=1.
However, by (6.2) and (6.3)
Nl(s) = 1
(B.13)
ﬁ(s) = s5+1
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(Note:a _(s) = 1"Ap(s) = (s+1)(s-1) and D;(s) = s-1) the system is
clearly stable. Thus, leaving all the common factors uncancelled

does not work.

However, if the general formula (4.5) is used and let all the minors

of Gp be in irreducible forms, we have

det(I+6 G ) det (1+G )

1+gp11+gp22+detGp

~sz+s+1 1

N -
B Gy f 5T Y R OGOD

s+1 _ )
(s+1})(s-1) E (B.14)

It is seen that if the common factor (s+1) is not cancelled, the- N
zero of (B.14) is eiactly the same as those given by-Ni(s) and

N(s) as shown in (B.13),

Note that the misleading factor (s-1) in (B.12) does not appear in
" (B.14). The Teason is that we started out with irreducible minors

the (s-1)

and in forming the 2nd order irreducible minor detGp,

factor was cancelled.
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Therefore, by'selecting cancellafions, stability of a multivariable
system can still be determined by (6.2) alone. All Eommon‘factors
in the minérs must be cancelled to get the irreducible forms, while
the others are not allowed. This strict rule together with the
applicatibn of formula (4.5) make the whole procedure completely

systematic, no confusion will arise.

As another example, consider

-5 s
' s-1 s+1
P -2
1 s+1

Gc(s) =1

which is also an example in (7).

By direct manipulation, it can be found that det (I+GPGC) = =1,

However, by selecting cancellations as described above, we have

det(I+Gch)=1+gp11+gp22+detGp

-3 -2 -sz+35

=Tt T DD

_ (s+1)(s-1) -  (B.15)
T D (s |
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Once again, if the common factork(s+1)(s—1) is not cancelled, the

two zeros of (B.15) are exactly what one would obtain as zeros for
Nl(s) and ﬁ(s) by (6.2) and (6.3). Thus, thesg two uncancelled zeros
of det(I+Gch) determine the staﬁility of the system. Since one of

them is in the right-half-plane, the feedback system is unstable.

These two examples suggest that (6.2) alone can be'used_és
characteristic equation for a multivariable system if we select
cancellations as desc¢ribed above., But, is this true in general?

To answer this question, consider the general expressionf(4.5)

for feedback system as shown in Figure 2.1, For simplicity, consider
2x2 Gp and G. first. |

By (4.5),

et (1+6,6,) = 146, (16, (1)+6, ()6 (D +6, (D16 (3 +e (56, (D)
1,2 1,2
*Gp(122) 8e(p2))
- 1M Neth NGy (D) Ny Ne ()
14y p (1 1 2 2 1
Dp (1) Pe () Dp () 0 (D) D () ()

) .
NG N () Np(i: D) Ned: D) (B.16)

2y 2y p (1,2 1,2
D, (3) D. () Dptl'z) Dc(1,z)

Where the notations for numerator and denominator of each irreducible

b

minor used in (B.3) and (B.4) are employed, e.g., Np(i), Dp
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denote the numerator and denominator of the first order minor
Gp(i) (=gP11), etc. Note that no common factor exists between

1 1 1 1
Np(l) and DP(I), Nc(l) and Dc(l), etc.

Let No(s), Do(s) be the numerator and denominator of (B.16), after
collecting 311 the terms at the right-hand-side under the
restriction that no pole-zero cancellation is alldwed‘(even if a

common factor exists). Then,

Dy(s) = LCM{Dp(i)Dc(i],Dp(%]ﬂc(fl,n.(%)Dc(%),

_npcg)nc(g), Dp(i:g)nc(i:g)} (8.17)

Also, by (B.3) and (B.4)}, .

HORLICN LN NN NEIR NetH - (B.18)
85 (s)=LeM{DL(]),0,(3),0p($),0,(5),D, (5253} ~ (B.19)

If no common factor exists between Ac(s) and Ap(s), which can be

6

realized by not using any plant pole” as a pole in the ¢ompensator,

66(5) has a polé at s=), whenever at least one element of G(}) is =,
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Dy(s) = ac(s) A (s) . - (B.20)

This can be proved by the following arguments:

1.

If no common factor exists between Ac(s) and Aé(s], then no
common factor can exist between any element in (8.18) and any
of those in (B.19) Otherwise, a common factor will exist

between Ac(s) and Ap(s).

Any factor of Do(s) must be a factor of either Ac(s) or

Ap(s) and with the same multiplicity. The reason is that any
factor of Do(s) huét exist in ét least one of thé five
elements in (B.17). And the multiplicity of this factor

must be the same as that of the element that has the maximum
multiplicity of the séme factor. By 1, this factor can be
either in the Dp‘s dr ip the Dc'srof (B.17), but not both,.
Therefore, by {(B.19) or (B.18)}, the factor with the same

multiplicity must appear in either Ap(s) or A.{s).

Any factors of 4,(s) Ap[s) must also be a factor of D, (s)

- with the same multiplicity. This can be seen by similar

arguments as that in 2 above, but starting from (B.18) and

(B.19) instead of (B.17).
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"Now, similar to what was done in the 1x1 case, let C(s) be the

common factor between No(s) and Do(s). Then,

Do(s) C(s)-Dl(s)

N,(s) = C(s) "Ny (s)

-By (6.3) and (B.20),

N(s) = Ac(;)'“pfs)
: Dy (s)
_ Do(s) '
D3 (s)
= C(s)

Therefore,‘the zeros of No(s) are exactly those of.Ni(s) fogether
with those of'ﬁ(s). Thus, stability of a 2x2 mﬁltivariable system
can be considered-by (6.2) alone; If (1) irredﬁcible minors aré
used in (4.5), (2) all the other cancellations are not aliowed,‘
(3) no plant pole is used in the compensator, and‘(4) gcij(s).i 0

for all i:l,-co’m j.._.l’tlo’n.

The condition gcij(s) # 0 in (4) was added because any zero gcij

will cause one corresponding element of (B.l?i to be miSéing which

will impair the equality of (B.20) if the associated D, term happens
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to be the only one among all the Dp's that contain the highest

multiplicity of any factor. This is shown by the following example:

-1 1 1
‘ s+1 -5
Let G_(s) =
P s-5 1
(s+3)(s+1) S+2 ‘
- ) B L (B.21)
[2:11(5)  Bepp(s)
G.(s) =
821 (8) | 3c22(5]J
Then -
= 1 '
Bpyp(s) )
‘ S = 1
Eplz( ) L
g (s) = s-5
pzl (573 (s+D)
: {(s) = _1
®p22’ Y
d'ic = 1
e p(S)

(s+1) (s+2) (s+3)



142

By (B.19), we have

Ab(s)=LCM{(s+1), (s-5), (s+3)(s+1l), (s+2), (s+1)(5+2)(s+3)}

= (s+1)(s+2)(s+3)(s-5)

Note that the highest multiplicity for the factor (s-5) comes from
the second element in the bracket, which is Dp{%), denominator of
8512(8) (o7 G,(3)). Now if g .. (s) = 0 is used (e.g., diagonal G),
the third term in (B.16) is zero, hence fhe element DP(%) Dc(%) will
not appear in (B.17). Theiefore, the factor (s-5) will not appear
in Do(s). This makes (B.20) to be not true. The (s-5) factof will
show up in ﬁ(s) of (6.3) which makes the system always unstable as
long as gczl(s)E 0.. Therefore, it is impossible to stabilizé the

system with diagonal compensator matrix Gc(s).

Therefore, whenever diagonal G.(s) is'émplqyed, Cafe must be-taken
to see if situation like this happens. This can be checked very
easily by forming all the pertinent irreducible minors of Gp(sj and
then check to see if the multiplicity of each plént pole iS retained
in these minors. 1If yes, zero element is éllowed in Gc(s) and

(6.2) alone can determine the stability. If not, (6.3) must aiso

be considered as was shown in the above example; Incidentally, this
is a trivial-case in single;loop systems. - Since there-isTonly one

element in Gc(s)lxl, which obviously cannot be identically zero.
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The above analysis for 2x2 Gp(s) can be carried over in exactly the

same manner to the nxm case,

Therefore, for systems as shown in Figure 2.1, if

5.

The general formula (4.5) for'det(I+Gch) is used.

All the common factors in the minors of G, are cancelled to

P

get irreducible forms.
All other cancellations are not allowed.
Plant poles are not used as poles of Gc.

Appearance of zero elements in G, is carefully checked,

then the zeros of det(I+Gch) alone determine the stability of the

system. If all of them are in the open left-half-plane, the system

is stable, otherwise it is not.

Therefore, as in the single-loop theory,

det(1+G,G.)=0 . | (B.22)

is referred to as the characteristic equation for multivariable

systems and stability can be considered through this equation.
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APPENDIX C: ROOT LOCUS GAIN

When root locus approach is used, it is convenient to express
transfer functions in terms of root locus forms (14) as shown
below:

kj(s+z-)

R A

G(s) = (c.1.)

k
sNH(s+pk)

where j, k are positive integers and s=—zj, s=-py are the zeros
and poles of G(s) respectively.
The gain constant k in (C.1) is referred to as the "root locus

gain" of the function G(s) (see 14).

In step 6 of Section 6.4, some algebraic manipulation was pqrformed

to find the root locus gain k,  of the function Geq(s]. In most

q
cases, this step can be bypassed as sh6Wn.below:

Let k3, ko, be the root locus gains of the two tr;nsfer functions
Gi(s) and Gz(s) respectively. Let (Gg(s), G.(s) ﬁe the sum and
the ratio (GZIGI) of Gl(s) and Gz(s), in root locus forms and ks’
kr denote the corresponding root iocus gains. Also, let the order
oflthe numerator and denominator of any rational function H(s) be

denoted by ON(H) and OD(H) respectively.
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Then, we have
THEOREM C.1
The root locus gain kg of.G(s)=Gl(s)fG2(s) is

k, if and only if ON(G;)+O0D(G;)>ON(Gy)+0D(G;)

(i) ks =
(ii) ks = ky if and only if ON(Gl)+OD(G2)<0N(Gz)+OD(Gl)
(iii)  ks = ky;+k, if and only if ON(GI)+OD(G2)=ON(G2)+OD(GI)

Cand ky # -k
THEOREM C.2
The root locus gain kr of G(s) = Gzls)/GI(s) is krszfkl.

Proofs for both Theorenm C.1 and C.2 are straightforward, hence,

omitted.

Both of these theorems are very simple in nature, however, they are
very useful tools in evaluating the root locus gains, as illustrated

below for the determination of keﬁ in Section 6.4 (see (6.41)).
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By (6.8),

6y = £,,* (det6 )g

Gy = 3+gp118c11

G

and G
eq G]_

]

For Gz »

ON(gp22)+OD(detGP‘gc11] = P+4 = 4

ON(detGp'gc11?+OD(gp22) = 2+1 = 3
Since 4>3, we have by Theorem C.1 (ij

¥6, kgpzz -
'whefe kGZ, kgp22 denéte'the root‘locus gains of Gz(s) aﬁd gpzzts)
respectively.

Similarly, for G

1]
| %]

oN(1)+OD(gpllgc11) = 042

1l
—

ON(gpllgc11)+OD(1) 1f0
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Again, since 21, by Theorem C.1 (i), we have

which agrees with what was obtained in Section 6.4 through algebraic

manipulation,

Remark: Whenevef k1+k2=0_in.case (1ii) of Theorem C.1, no conclusion
can be obtained through the theorem, since no obvious analytic

expression exists for the coefficient of the second higher order
terms. However, direct algébraic manipulationlcan‘always be used

in such cases.



